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Simulation of extensional clay fractures
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A spring network model has been used to study fractures in thin layers of material supported by a deform-
able substrate. The interactions with the substrate localize the stress/strain field in the material. The crossover
of the shape of a single fracture in an ordered material from an elliptical form to a long, thin shape was studied
as a function of the substrate attachment strength. For many interacting fractures in a disordered material, the
simulated fracture patterns reproduced the most important visual and statistical properties of fracture patterns
from recent experiments on thin slabs of clay attached to a deformable substrate. In particular, the correspon-
dence was good for a new set of scaling relations between the lengths and areas of fractures. The shapes of the
larger cracks were consistent with a self-affine curve with a Hurst exponent of 0.5. The dynamics of the
development of the fracture pattern corresponds qualitatively to experimental results.
@S1063-651X~98!10811-5#

PACS number~s!: 64.60.2i, 62.20.Mk, 61.43.2j, 81.40.Np
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I. INTRODUCTION

Fractures and fracture surfaces in disordered mate
have recently received much attention. In particular, it h
been argued that fracture surfaces are self-affine@1–5#, and
that the Hurst exponent has a universal, material indepen
value@5,6#. Even so, attempts have also been made to co
late the Hurst exponent with material properties such
toughness@4,6#. In some systems, many fractures are nuc
ated throughout the material, and the interactions betw
them play an important role in the material failure proce
Fractures grow both by propagation at their ends and by
coalescence of smaller fractures. The growth of any in
vidual fracture is strongly influenced by interactions with
neighbors, mediated by the stress/strain field. Systems o
teracting fractures provide us with an opportunity to stu
properties other than the shapes of individual fractures.
example, the distribution of the shapes and sizes of the f
tures can be studied, and these distributions might also h
universal characteristics. In several important applicatio
such as the characterization and modeling of oil reservo
aquifers and waste storage facilities, an understanding o
distributions of fracture sizes and shapes is required, as is
way in which the fractures are organized to form a fract
network that can transport fluids through the fractured ma
rial.

In many cases of interest, fractures appear in layers
material with a large length to depth ratio that are suppor
and deformed by underlying~and/or overlying! layers of de-
formable material substrate. Familiar examples include a
film of paint on wood, plastic or metal, a layer of dried mu
on the bottom of a dried up lake~dessication fractures! or a
layer of rock in the Earth’s crust. In these systems, the e
lution of the stress/strain field in the material is dominated
the boundary conditions for the attachment, since the st
fields are strongly localized by the attachment to the s
strate. However, the propagation of any individual fracture
PRE 581063-651X/98/58~5!/5548~17!/$15.00
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still influenced by its neighbors because the presence
fracture changes the stress/strain field in its vicinity. T
type of boundary condition is not only an integral part of
wide range of natural systems, but it also greatly simplifi
the problem from a computational point of view, because
the effect of the growth of one crack tip is localized and do
not necessarily change theentirestress/strain field after eac
growth event.

A typical example of such a system is a thin slab of cl
that has been prepared on a deformable substrate. Clay m
els have been used to study large scale geological proce
on laboratory scales for almost 200 years@7–11#. The use of
clay models for this purpose is based on classical sca
theory @12# and the rheological similarity between clay an
the Earth’s crust. A recent series of experiments@13# has
shown that the fracture patterns formed during extensio
deformation of supported layers of clay were characterize
terms of a scaling relation between the fracture lengthL and
the open fracture areaA, L}Ab. The exponentb was found
to be approximately the same for both experiments and si
lations. The study focused on extensional deformations s
the fractures and faults open during extensions and the f
ture pattern could therefore be easily visualized. Extensio
deformations are also frequently dominant in oil reservo
and these scaling relations may therefore have technolog
relevance. Here, the model presented in@13# is studied in
more detail, with emphasis on the statistical properties
fracture patterns and individual fractures, and the dynam
of the fracturing process.

Several models have been proposed to simulate frac
processes in two-dimensional systems. For example, mol
lar dynamics models have been applied to simulate ato
fracture dynamics@14,15#. However, these models are re
stricted to systems of very small size. Models inspired
statistical physics and disordered systems in particular h
been more successful in describing macroscopic behavio
these models, the system is represented by a networ
5548 © 1998 The American Physical Society
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PRE 58 5549SIMULATION OF EXTENSIONAL CLAY FRACTURES
simple mechanical units that represent the properties of
material averaged over an intermediate scale between
overall macroscopic scale of the material and the scale
microscopic details such as the size of the clay particles.
example, a two-dimensional material can be represented
lattice of interconnected springs. The inherent disorder in
material can be quenched~each material element is give
material properties selected randomly from some distribu
that is characteristic of the model! or annealed disorder ca
be introduced by removing or modifying mechanical e
ments in the network randomly, with probabilities that d
pend on both the properties of the individual mechani
elements and the local stress/strain conditions that they
subjected to. In this case, fracturing is represented by br
ing material elements irreversibly, and removing them fro
the lattice. Models have also been developed in which
mechanical elements are beams that can locally sustain s
@16,17#. Also, a scalar, electrical analog of the spring n
work model @18–20#, called the random fuse model, ha
been used widely to study the fundamental aspects of f
ture @20–23#.

Most studies carried out using mechanical network m
els have been limited to small system sizes because o
long range effect of breaking a single bond. The Lapla
equation~for random fuse models! or linear elasticity equa-
tions must be solved after each bond is broken and the c
putational cost of solving such equations increases rap
with system size. Meakin@24# developed a ‘‘substrate sup
ported’’ model in which a two-dimensional spring netwo
was bound to a substrate using elastic springs. If the mod
of the springs connecting the network to the substrate is
too small relative to the moduli of the springs in the tw
dimensional network, the perturbation of the system res
ing from the removal of a single bond is localized and c
culations can be sped up significantly. The electrical~scalar!
analog of the substrate supported model was develope
Colina et al. @25# who suggested that it could be used
simulate the drying of clay. However no quantitative co
parison between the model results and natural or labora
cracking patterns was made.

In this article, we study the fracturing in a large elas
network attached to a deformable substrate and attemp
make a direct comparison with recent experiments on fr
tures in clay. Comparisons are made visually and by us
statistical measures of the fracture pattern, such as the
distribution of fractures and a proposed scaling relation
tween fracture length and area. This article is divided in t
parts. The first part addresses the behavior of a single f
ture in an ordered material. This allows a detailed study
the effect of the substrate attachment on the fracture sh
and the propagation of the stress field. Since there are
corresponding experimental studies on clay, the results w
compared with elliptical fractures described by linear elas
ity theory @26#. In particular, the scaling relationL}Ab is
studied for the growth of a single fracture. The second par
this article discusses the behavior of a disordered mate
subjected to uniform extension. In this case, a pattern
interacting fractures is generated. The distribution of sha
and sizes of the fractures is studied and compared with
patterns from clay. The simulated patterns reproduce
most important visual and statistical properties of the exp
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mental clay patterns. In addition, the self-affine scaling pr
erties of individual fracture and the time development of t
fracture pattern were studied and compared to experime
data. The simulation model used both for studies of a sin
fracture in an ordered material and of many fractures in
disordered material, is presented in Sec. II. Section III d
cusses the behavior of a single fracture, and Sec. IV
dresses the behavior of materials with many fractures.
results are discussed and compared with experiments in
V. Finally, conclusions and suggestions for further study
presented in Sec. VI.

II. SIMULATION MODEL

The material is modeled as a network of simple mecha
cal units, as explained above. Here, a triangular network
interconnected springs represents the material. Fracturing
curs through the irreversible removal of a spring if the str
in the spring exceeds a threshold value. The material pr
erties of the material are determined by the properties of
springs and the breaking thresholds. The springs are assu
to be Hookean~the force is linear in the elongation! and the
equilibrium length and spring constants of the springs
constant. The boundary interactions are reduced to a sim
set of boundary conditions: The surface layer of springs
attached to a deformable substrate representing eith
single substrate or a pair of substrates that lie above
below the deformed material. The coupling is through we
springs attaching each node to the substrate as illustrate
Fig. 1. The deformation of the layer is controlled by th
motion of the substrate and the substrate spring attachm
points. The net force acting on a nodei at a positionxW i8 is

fW i5(
^ i , j &

k1~ uxW i82xW j8u2 l !uW i , j1k0~xW0,i8 2xW i8!, ~1!

where the sum is over all connected neighborsj , uW i , j is a
unit vector fromj to i , xW0,i8 is the position of the substrat
attachment points for nodei , l is the equilibrium distance
between nodei and j , k is the spring constant, andk0 is the
substrate spring attachment constant. The equation ca

FIG. 1. The material is represented by a triangular lattice
springs, each with spring constantk and equilibrium lengthl. Each
node is connected to an underlying substrate with a spring of z
equilibrium length and spring constantk0 . In the model, the nodes
and the substrate attachment points are in the same plane. The
tic network and substrate attachment planes have been separa
this figure to show the connecting springs.
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5550 PRE 58A. MALTHE-SO”RENSSENet al.
simplified through a normalization with the spring consta
and the equilibrium length. The resulting equation is

1

k l
fW i5(

^ i , j &
~ uxW i2xW j u21!uW i , j1k~xW0,i2xW i !, ~2!

wherexW5xW8/ l and the effective substrate attachment spr
constant,k5k0 /k, is the ratio of the substrate spring co
stant and the internode spring constant.

During a simulation, the material is deformed by defor
ing the substrate and moving the substrate attachment p
in small steps. After each step, the spring network is rela
so that the energy is at a minimum or, equivalently, so t
the net force on all nodes is zero. A bond can only susta
certain stress and breaks if the stress exceeds the bre
threshold. If any spring exceeds its breaking threshold, i
removed from the network, and the network is relaxed ag
This procedure is repeated until no more bonds break.
substrate is then deformed one further step and the relaxa
repeated.

Standard overrelaxation techniques@27# were used to
reach a new mechanical equilibrium after each spring rup
event. The relaxation is characterized by the relaxat
thresholde. Only nodes that would move further thane in a
relaxation step were actually moved during the relaxat
cycle. The attachment to the substrate strongly localize
perturbations from a bond rupture. In view of this localiz
tion the relaxation was intensified in the regions around
fracture tips during each relaxation cycle. This meth
greatly reduced the calculation time.

The effective substrate attachment force constant,k, intro-
duces a characteristic length scalel in the model. The at-
tachment inhibits propagation of the stress field. It can
shown that a perturbation from a bond rupture decays ex
nentially in one dimension@25,28# and for smallk the aver-
age length between neighboring fractures,l, scales asl
}1/Ak in one dimension. The two-dimensional case of pu
extension is expected to behave similarly: A fracture w
relax the nodes close to its sides, but the relaxation is ex
nentially localized. After a lengthl the stress will be similar
to that in an unfractured lattice.

In the substrate attachment model, the relaxation thre
old e is chosen so thate!k. However, the physical interpre
tation ofe can be illustrated by examining the case in whi
e@k. In this case, the relaxation in the network is domina
by e and not byk. During each relaxation event, each node
displaced by a distance proportional to the net force ac
on it, and for smallk, this is approximately proportional to
the forces from the connected nodes in the layer. Nodes
which the force is smaller than the threshold,e, will not be
moved, corresponding to the effect of a static friction for
acting on all nodes. In this limit, the model can be describ
as a network of interconnected blocks that rest on the s
strate. During extension, all the blocks are moved with
substrate. Then the network is relaxed, and a static fric
with a threshold proportional toe is imposed on each bloc
from the substrate. The model is therefore analogous
spring-block model on a triangular lattice. Results obtain
from the spring-block model will be discussed and compa
to the substrate attachment model.
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The deformation in both models is determined by the m
tion of the substrate attachment points. Each point can
moved individually, allowing many different types of defo
mations to be implemented. Here, we will study extensio
deformations only, and leave other modes of deformation
a further study. For a uniform extension in they direction,
the displacement of the substrate nodes at a total extenst
is

xW0,i~ t !5F 1 0

0 11tGxW0,i~ t50!. ~3!

Periodic boundary conditions are applied in both thex and
they directions in order to reduce finite size effects. Perio
boundaries can be a problem for long fractures that pro
gate across the sample, since the fracture will screen it
However, the simulations were stopped at small deform
tions to eliminate such difficulties.

III. SINGLE FRACTURE IN AN ORDERED MATERIAL

The behavior of a material consisting of a network
interconnected springs can be described by linear elast
theory @23# when boundary conditions are imposed on t
edges only. However, for the substrate attachment model
the spring-block model, the boundary conditions and the
posed stress differ from the classical picture with stres
applied only at the edges of the network. In order to stu
the effect of the substrate attachment, a simple case of f
turing was studied for the models and compared with res
from linear elasticity theory. A particularly simple case
fracturing, for which similar solutions from linear elasticit
theory are known, is the growth of a single fracture in
ordered material far from the edges of the network.

In fracture theory for elastic materials, an elliptical fra
ture far from the boundaries in a two-dimensional mate
with a uniform extensional stress is described by the len
of the elliptic half-axesa and b. The width of the fracture,
w(x), a function of the distance,x, to the fracture tip, in-
creases from 0 towmax5b:

w~x!5wmaxAx

aS 22
x

aD 1/2

. ~4!

For an elastic material, the maximum width is proportion
to the fracture lengthL52a: wmax}L @26#. Close to the
fracture tip, the width is approximately proportional to th
square root of the distance from the tip:

w~x!.wmaxS x

aD 1/2

for x!a. ~5!

According to linear elasticity fracture mechanics, the str
sxx decays as a power-law away from the tip of an elliptic
fracture according tosxx5C(a/x)1/2.

The simulation model differs from the ideal case d
scribed by fracture mechanics in several respects. The m
is discrete and the fracture has a smallest scale given by
lattice size. A fracture in the simulation model is therefo
not a purely elliptical fracture. The loading conditions a
also very different in the simulation model, since stress



r

PRE 58 5551SIMULATION OF EXTENSIONAL CLAY FRACTURES
FIG. 2. Part~a! shows plots of the width of the fracturew(x;k) as a function ofx, the distance from the fracture tip, andk, the substrate
attachment spring constant. The different curves are~from bottom to top! for k51022, 331023, 1023, and 1024. The curves cross ove
from power-law behavior for smallx to a flat plateau for largex. Part ~b! shows a data collapse plot based on the scaling formw(x;k)
5k2bwgw(xk2nw). Part~c! shows a plot of the functionwmax(k), which indicates that it has a power-law form. Part~d! show plots ofjw as
a function ofk, wherejw is determined fromw(jw ;k)5zwmax. The curves shown are forz50.9, 0.8, 0.7, and 0.6~from top to bottom!.
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applied to all nodes through the substrate attachmen
single fracture was prepared in the simulation model
comparison with the theoretical results. All the springs in
triangular network were given identical material properti
the equilibrium length and the spring constants were
same for all nodes. A uniform stress corresponding to
extensiont of the substrate was imposed on the system.
tially, the center bond was removed. The fracture was gro
without changing the imposed stress by repeatedly brea
the most strained bond along the border of the fracture,
ating an open, connected region. The simulation model u
here therefore differed from the earlier description, since
substrate was fixed at a given extension,t, and a fracture was
grown according to specific rules irrespective of break
thresholds. However, these changes allow the effect of
substrate attachment to be studied for a single fract
Simulations were performed for both the substrate atta
ment model and the spring-block model, and the parame
k and e were varied systematically. Simulations were a
performed for different spring network sizes,L, measured in
units of equilibrium bond lengths. The results for the su
strate attachment model are discussed first.

The simulated fracture was characterized by the wi
w(x) as a function of the distancex to the fracture tip. Figure
2~a! shows the behavior ofw(x,k) for different values ofk
for e5k/300 on a 4003400 lattice. Close to the fracture ti
the width increases rapidly withx. The behavior is consisten
with a power laww;x1/2, which is similar to the theoretica
result for a continuum elastic medium. For largex, the width
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approaches a constantwmax. The behavior of the width can
therefore be characterized as a crossover from a power
form to a constant function at a crossover lengthjw . For x
!jw , the width is approximately a power law, and forx
@jw , the width is constant. Both the maximum widthwmax
and the crossover lengthjw vary systematically withk. Simi-
lar crossovers are frequently observed in other areas of
tistical physics, for example, in percolation theory@29#.
Mapping the crossover behavior is often a useful tool in u
derstanding the functional dependence of the character
lengths on the parameters that are varied systematic
Based on ideas from crossover analysis, we propose
simple scaling form

w~x,k!5k2bwgw~xk2nw! ~6!

for the width, where the functiongw(u) is a crossover func-
tion, which is a power law for smallu and constant for large
u:

gw~u!5H c1uaw u!u0

c2 u@u0
~7!

Figure 2~b! shows the best data collapse for the fractu
width. The data collapse is not very good; there are cl
discrepancies for small lengths. However, the collapse
pears to characterize both the behavior of the maxim
width and the crossover length sufficiently well. The exp
nents found from the data collapse indicate thatjw}knw,
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wherenw520.4860.05, andwmax}k2bw, wherebw50.45
60.05. This exact behavior was, however, anticipated, si
the localization of stress perturbations due to the subst
attachment implies the following physical picture: The su
strate attachment introduces a length scalel, which de-
scribes the exponential decay of perturbations in the st
field. For a one-dimensional model,l depends on the sub
strate attachment spring constantk, l}k21/2. At length
scales sufficiently smaller thanl, the model is not influenced
by the substrate attachment and behaves as an unatta
spring network with a constant, imposed stress. This is
exact situation described above for elliptical fractures in l
ear elasticity theory. At lengths much greater thanl, the
behavior is dominated by localization, which prevents
fracture from widening when it grows at an end. Cons
quently, in the limit of large lengths the fracture grows
length with a constant width. The power-law form of th
characteristic length,jw , and the values of the power-law
exponents found above, are consistent with this picture
distances significantly smaller than the characteristic len
the power-law behaviorw;x1/2 is observed, as expecte
theoretically for elliptical fractures. The lengthjw separates
the two behaviors and corresponds tol. The power-law de-
pendence onk is also the same~within the uncertainties! for
jw and l. Similarly, the maximum widthwmax is also ap-
proximately proportional tol. The only relevant length scal
in the system is therefore the localization length,l. This
implies that

w~x,k!5lgw8 ~x/l!5k21/2gw~xk21/2!, ~8!

wheregw8 (z)}gw(z), and that the exponentsbw andnw have
values of 1/2 and21/2, respectively. The values ofbw
50.4560.05 and nw520.4860.05 are consistent with
these simple theoretical predictions.

The data collapse forw(x,k) is rather poor. Several fac
tors influence the behavior ofw. For small lengths, the finite
lattice size affect the results, and the dynamic range of va
for the width, the span between the smallest and the lar
value, is narrow. Due to these factors, the uncertainties
large. However, the scaling results proposed above were
tested directly. The maximum widthwmax was measured di
rectly as a function ofk, as shown in Fig. 2~c!. The behavior
is a reasonable power law, and the best fit gives the rela
wmax}k20.460.1. The maximum width is therefore, within th
uncertainties, proportional tol. Similarly, the characteristic
lengthjw was measured directly. A reasonable definition
the characteristic length is the lengthj at which the width
had reached a fractionz of its maximum value:w(j;k)
5zwmax. Figure 2~d! shows a plot ofj as a function ofk for
several values ofz. The dependence is again approximatel
power law,jw}k0.4860.1, which indicates that the characte
istic length is proportional tol. Consequently, the result
from the data collapse are valid, even though there are o
ous deviations from the scaling form given in Eq.~6!.

For an elliptical fracture, the fracture shape is charac
ized by the ratio between the fracture widthwmax and length
L. A more precise measure, which takes into account
variation of the width along the fracture, is the average wi
^w&, averaged along the length of the fracture. Equivalen
the shape can be characterized by the fracture length and
e
te
-

ss

hed
e
-

e
-

t
h,

es
st
re
lso

n

f

a

i-

r-

e
h
,
rea

A since the average width is defined as^w&5A/L. A similar
measure has been proposed to characterize the stati
properties of fracture patterns, and it is therefore interes
to study the growth of the length and area during the grow
of a single fracture, in order to compare with that of a fra
ture pattern. Figure 3~a! shows a plot of the lengthL as a
function of the fracture areaA obtained from the simulation
of a single fracture in an ordered material. Both fractu
length and area grow when the fracture grows, and the cu
shows the relation between the two. The curve display
clear crossover that varies systematically with the subst
attachment spring constant,k. Based on the ideas presente
above, a data collapse of the form

L~A;k!5k2bLgL~Ak2nL! ~9!

was attempted. Figure 3~b! shows an excellent data collaps
The crossover functiongL(u) varies from a power law for
small u to a linear relation for largeu:

gL~u!5H c1uaL u!u0

c2u u@u0 .
~10!

The exponentaL50.560.05 were determined by a fit fo
small fractures. The scaling exponentsnL521.060.05 and
bL50.5560.05 were determined from the data collap
shown in Fig. 3~b!. The behavior is separated by the chara
teristic area,jA}knL, and the corresponding characteris
length,jL5L(jA).

FIG. 3. A plot of the lengthL(A;k) as a function of the fracture
areaA and substrate attachment force constantk. Part~a! contains a
direct plot and~b! shows a data collapse plot fork51021,1022,3
31023,1023,1024.
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The crossover behavior can again be explained by con
ering the effect of the substrate attachment. The short ex
nation is that for small fractures,L!jL , the fracture is not
affected by the substrate attachment and behaves as an
tical fracture in an unattached spring network, for which t
length and the width are proportional andL}A1/2. For large
fractures,L@jL , the substrate attachment prevents the fr
ture from widening when it grows at the ends, implying th
L;A. A more precise argument, which also explains
relationships between the scaling exponents, is based on
scaling form of the widthw(x,k). The area of the fracture i
given by the integral of the width along the fracture:

A~L;k!5E
0

L

w~x,k,L !dx. ~11!

In general the width is also a function of the fracture leng
L, w5w(x,k,L). For large fractures (L@jL) the width has
two distinct regimes, a region with a constant, maximu
width, and a region close to the tips, where the width var
The area is the sum of the areas of these regions

A~L;k!52E
0

jw
w~x,k,L !dx1~L22jw!wmax. ~12!

For largeL, the main dependence is in the last term, so t

L~A;k!5A/wmax5k2bLgL~Ak2nL!. ~13!

In the limit of large lengths,L is proportional toA. Since
wmax5k2bw, the scaling relationbL1nL52bw is obtained
from Eq. ~13!. A similar relation is obtained in the limit o
small fractures. Since all the curvesL(A) overlap in the
unscaled plot in Fig. 3~a! the curveL(A) is independent ofk
in this region. Assuming that the theoretical behavior,L(A)
5A1/2, is valid in this limit, we obtain the scaling relation
2bL2nL/250. For bw51/2, the exponents are determine
to be n l51 andbL51/2, which is very close to the expo
nents found from the data collapse. The results are there
consistent with a crossover lengthjL proportional to the lo-
calization length,l.

The localization effects of the substrate attachment
also be observed in the stress field around the fracture
For an elliptic fracture in linear elasticity theory, thesxx
component of the stress tensor decays as a power lawsxx
}x21/2, away from the fracture tip. Figure 4~a! shows a plot
of sxx as a function of distancex from the fracture tip for the
single simulated fracture in an ordered material with a s
strate attachment spring constantk. For small distances,x
!js , the stress decays approximately as a power law,sxx
}x20.560.1. For large distances,x@js , the stress is constan
The crossover lengthjs varies systematically withk. The
data collapse in Fig. 4~a! indicates that the crossover leng
is proportional to the localization lengthl, since js

}k20.560.1. From the theoretical treatment of an elliptic
fracture, the amplitude of the stress componentsxx is known
to depend on the fracture lengthL. The variation of the am-
plitude is characterized by measuring the stress at a con
distance from the fracture tip,x50, that is, at the fracture tip
for the simulated fracture. Because of the discrete lat
size, the stress does not diverge at the fracture tip in
d-
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simulations. The stress at the fracture tip was measured
function of the number of bonds broken,n, in the fracture,
which is proportional to the fracture lengthL. Figure 4~b!
shows a data collapse plot ofsxx(0,n;k) for a single simu-
lated fracture. For small lengths, that is, for small values
n, n!jn , the stress at the fracture tip increases appro
mately as a power lawsxx(0,n;k)}n0.460.1. This is very
close to the theoretical results for elliptic fractures, for whi
the amplitude of the stress depends on the square root o
fracture length. For large fractures,n@jn , the tip stress ap-
proaches a constant value. The crossover lengthjn separat-
ing the two behaviors varies systematically withk, and the
data collapse again indicates that the crossover length is
portional to the localization lengthl.

All the quantities that characterize the fracture shape
therefore related to the localization lengthl. For fractures
with lengths smaller thanl, or at distances smaller thanl,
the fracture is similar to an elliptical fracture described
linear elasticity theory. That is, the substrate attachment d
not influence the fracture on these lengths. For fractures
nificantly longer thanl, the fracture is essentially a line o
constant width, which is also proportional to the localizati
lengthl. The behavior of the simulated fracture does, ho
ever, deviate from the theoretical description for very sm
fracture and on very small lengths. We attribute these de
tions to the finite lattice size. Very small fracture is not we
approximated by an elliptical fracture, because of the fin
lattice size.

A similar analysis was applied to study the behavior
the spring-block model. For the spring-block model, the p

FIG. 4. Part~a! shows the stress componentsxx as a function of
distancex from the fracture tip. Part~b! shows a finite-size data
collapse plot of the stress componentsxx(0,n;k) at the fracture tip
(x50) as a function of the number of broken bondsn.
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turbation of the stress field away from a broken bond is
stricted by the displacement thresholde, which corresponds
to a static friction threshold for node displacement. The
fect of e on the propagation of the stress field from a sin
broken bond was first studied in a one-dimensional mo
The nodes were initially subjected to a uniform straint and a
bond was removed. The system was relaxed and the
displacementDx of each node from its initial position wa
measured as a function of the distancex to the broken bond.
The results fort51.1, that is, 10% extension, and varyin
values ofe were consistent with the scaling form

Dx5e21.060.1gDx~xe1.060.1!, ~14!

where the functiongnx(u) decays as an exponential fun
tion. The decay of a perturbation away from the bond the
fore depends on the characteristic lengthle}ene, with ne5
21.060.1. At a distancele away from a broken bond, th
strain perturbation is a small fraction of the maximum valu
For the one-dimensional system, the behavior is very sim
to the behavior for the substrate attachment model.

The quantitative measurements used to characterize
fracture shapes for the substrate attachment model were
applied to the spring-block model. Plots of the widthw(x,e)
of the fracture display a behavior similar to the substr
attachment model. At short distances,x!jw , the fractures
behave as elliptical fractures described by linear elasti
theory, and on long distances,x@jw , the fractures have a
maximum width and grow in length only. The characteris
length jw and the maximum width are proportional to th
localization lengthle . Figure 5~a! shows the relation be
tween the fracture lengthL and the fracture areaA for a
single fracture in the spring-block model with a displacem
thresholde. The curve is consistent with a crossover from
power-law behaviorL}A0.5 for small fractures,L!jL , to a
linear behaviorL}A for large fractures,L@jL . The cross-
over lengthjL varies systematically with the displaceme
thresholde. The data collapse in Fig. 5~b! shows that the
crossover lengthjL is a function of e, jL}e0.960.1. The
crossover length is therefore proportional to the localizat
lengthle for the spring-block model. A direct analysis of th
stress field around the fracture tip is also consistent with
picture of a characteristic lengthjs , proportional tole ,
which separates the theoretical behavior of an elliptical fr
ture from the localized behavior in a large fracture.

The spring-block model behaves similarly to the substr
attachment model. The behavior is separated into two
gimes. At small distances and for small fractures, the frac
can be well described as an elliptical fracture in a linea
elastic material. At this scale the fracture is not influenced
the substrate attachment. For large fractures and at large
tances the fracture is essentially a line of constant width.
characteristic lengths separating the two regimes are pro
tional to the localization lengthle . Some deviations were
observed in the data collapses. However, the o
dimensional model indicated that there were deviations
the simple scaling behavior,l;e21, for larger values ofe.
Due to finite-size effects and restrictions on computer tim
the two-dimensional simulations were restricted to lar
values ofe.
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Finite-size effects can have a significant influence in th
simulations even though they were carried out using perio
boundary conditions on a 4003400 lattice. The stress field
from a fracture may propagate around the sample and in
act with its images in the infinite periodic lattice generat
by the periodic boundary conditions, if the primary lattice
small or the localization length is large. The finite-size e
fects were examined by varying the system sizeL. For the
substrate attachment model, finite-size effects are impor
for small L and k. The form of the functionL(A;k,L)
~which describes how the length of the fracture depends
the areaA for different values ofk and L) depends on the
lattice size for small lattices as seen in Fig. 6~a!. The func-
tion crosses over at a lengthjL that increases systematical
with L. However, for largeL the function crosses over at
length jk that depends onk. When jL.jk only the first
crossover is observed. The behavior of the model is there
determined by the smallest of the lengthsjL andjk . Exactly
how jL depends onL could not be extracted from the dat
since the finite-size deviations were small close to the cro
over and a large uncertainty was therefore associated
the position of the crossover. For the spring-block mode
similar behavior was observed. The functionL(A;e,L)
crosses over at a lengthjL that increases systematically wit
L as seen in Fig. 6~b!. However, for the given value ofe the
region in whichjL exceededje was not reached, since onl
a limited range ofL values were available due to restriction
on computer time. The computer time needed for a simu
tion increases rapidly with bothL andje . Again, the exact
dependence ofjL on L could not be determined. Thes

FIG. 5. A plot of the lengthL(A;e) as a function of the fracture
areaA and the displacement limite for the spring-block model (e
@k). Part~a! contains a direct plot and part~b! shows a data col-
lapse plot fore51022, 631023, 331023, and 1023.
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PRE 58 5555SIMULATION OF EXTENSIONAL CLAY FRACTURES
finite-size effects restricted the parameter range that coul
tested by the simulations. For smaller values ofk and e,
larger lattices were needed to avoid finite-size effects, and
addition, the simulation time for identically sized lattices i
creased. The range of values available fork and e were
therefore limited.

IV. MANY FRACTURES IN A DISORDERED MATERIAL

The computer model can be used to simulate the frac
ing of a material layer attached to a deformable substrate
general, such systems do not consist of a single fracture
many, interacting fractures that nucleate, grow, and me
The stress at a particular point in the material depends o
the fractures in the sample, within the localization leng
determined by the substrate attachment. Since both gro
and nucleation of fractures depend on the local stress,
not sufficient to study a single fracture. The whole syst
must be considered to address the behavior of the frac
pattern. To model disordered materials such as rock and c
the local variation of material properties must be includ
The material is assumed to be homogeneous on scales m
larger than the length of a single spring, which is realistic
clay, since clay, unlike rock, is homogeneous on long len
scales. On smaller scales the material is disordered. The
terial properties of the springs are drawn from random d
tributions to simulate the quenched disorder, which is froz
into the spring network. Here, the equilibrium length a
spring constant were constants, and only stress threshold

FIG. 6. Finite-size scaling plots for the lengthL as a function of
A for a singe fracture. Part~a! shows L(A;k51023,L) for the
substrate attachment model and part~b! shows L(A;e56
31024,L) for the spring block model. The curves are forL
550,100,200,400. The deviations are systematic inL.
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each spring were selected randomly. The material behavi
determined by the randomly distributed stress thresho
Several families of distributions were tested. The resu
most similar to clay were obtained with a Gaussian distrib
tion with averagem and standard deviations. The behavior
of the network varied withm and s. A very narrow distri-
bution resulted in a brittle material: A single straight fractu
propagated across the sample. For a wider distribution
material behavior was more ductile.

The model is not restricted to simulate materials that
homogeneous on large scales. Specific inhomogeneities
be included in the model by changing the material proper
in particular regions of space. The model produces a w
range of patterns for different distributions of breakin
thresholds. Centralized distributions, such as a uniform
tribution or a Gaussian distribution produce similar patter
and are represented here by a Gaussian distribution of thr
olds. However, other types of distributions have also be
tested. For example, exponential distributions, for wh
most bond strengths were small, produced very dilute p
terns. These patterns were not similar to naturally occurr
patterns, such as in clay, since most bonds fractured
domly at small strains, when the stress field was not imp
tant for the fracture development.

Fracture patterns from simulations in the substrate atta
ment model and the spring-block model are shown in Fig
and Fig. 8, respectively. All the simulations are for the sa
material properties, a Gaussian distribution of break
thresholds was used withm51.15 ands50.05, but the sub-
strate attachment constantsk ande were varied. The pattern
in the two models have many common features. For
ample, both patterns are characterized by an average spa
between the fractures, and by the correlations between
fractures: Long fractures are tailed by smaller fractures cl
to the fracture tips and fractures tend to form bands of alm
connected fractures. In the following, we characterize
fracture patterns statistically and visually. The statisti
properties of individual fractures, such as their self-affi
scaling properties, are studied, and statistical measures
applied to describe the dynamics of the fracturing proces

A striking feature of the patterns in both the substra
attachment model and the spring block model is the appr
mate uniform spacing of the fractures. The spacing appe
to vary systematically with the attachment parametersk and
e. Studies of a single fracture in an ordered material~see
Sec. III! show that the substrate attachment introduce
characteristic length scale, the localization lengthl, that de-
termines the stress decay around the fracture and the sha
the fracture. A similar characteristic length is expected to
reflected in the fracture patterns for a disordered materia
fracture releases strain in the regions surrounding the f
ture. In the direction normal to the direction of fractu
propagation, the stress increases with the distance from
fracture, and approaches a constant value far away from
fracture. In one dimension, the stress increment can be fo
exactly. The substrate attachment induces an exponentia
calization of the relaxation close to the fracture, charac
ized by the localization lengthl. This is the case for both the
substrate attachment model and the spring-block mo
however, for the spring-block model the one-dimensional
sults are not known exactly, but were determined from
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FIG. 7. Picture of the fracture patterns from simulations using a 2003200 substrate attachment model withe5k/300 and a Gaussian
distribution of breaking thresholds withm51.15 ands50.05. The pictures are for 20% extension of the substrate fork50.03,0.01,0.003
and 0.001 from top left to bottom right.
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simulations. This stress increment controls the nuclea
and growth of nearby fractures. A similar effect is expec
in two dimensions. And, indeed, in the case of a single fr
ture in an ordered material, a decay of the perturbations c
acterized by a characteristic lengthl was observed. Beyond
a distancel, the perturbation from an open fracture, f
example the relaxation from an open fracture, is negligib
Because of this effect, the spatial distribution of fractures
correlated, and the appearance of a characteristic dist
between the fractures in the direction of the externally i
posed strain is expected. The spacing in the simulated
terns was characterized by measuring the average dist
between fractures,D l . Figure 9 shows plots of the averag
spacing as a function ofk ande for the substrate attachmen
model and the spring-block model, respectively. The cur
are consistent with power laws. For the substrate attachm
n
d
-
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.
s
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-
at-
ce

s
nt

model, D l}knk, with nk520.460.1. The average spacin
is, therefore, within the uncertainties, proportional to the
calization lengthl. Similarly, for the spring-block model
D l}ene}le , with ne521.160.1. Consequently, the aver
age spacing is proportional to the localization length for b
models.

Several statistical measures were applied to characte
the simulated fracture patterns. The size distribution of fr
tures is frequently used to characterize fracture patterns.
ure 10 shows plots of the probability densityP(L) for a
fracture of lengthL. @The probability for a fracture to have
length in the intervalL to L1dL is P(L)dL.] The different
distributions correspond to the patterns shown in Fig. 7 a
Fig. 8. For the spring-block model@Figs. 10~a! and Fig. 8#,
the distribution crosses over for small and large fractur
Crossovers are also expected for small and large fracture
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FIG. 8. Picture of the fracture patterns from simulations of a 2003200 spring-block model with a Gaussian distribution of break
thresholds withm51.15 ands50.05. The pictures are for 20% extension of the substrate fore50.002, 0.001, 0.0005, and 0.0001 from to
left to bottom right.
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the simulated patterns, there are many small fractures
result from the random breaking of a single or just a f
bonds. The number of these fractures depends on the d
bution of breaking thresholds and the density of very we
bonds, and are not a result of the interaction between f
tures and the stress field that characterize larger fractu
Very small fractures, with a length smaller than a few latt
constants, should therefore be ignored. Large fractures
restricted by the localization length, which is reflected in t
cutoff in the probability densityP(L) for large fractures. In
the intermediate range, between these two crossovers
characteristic behavior of the model can be observed. In
region, the behavior might be consistent with a power la
at

tri-
k
c-
s.

re
e
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,

however, the scaling region is too narrow to distinguish
behavior from a crossover between two non-power-law
gimes.

The probability density of fracture lengths for the su
strate attachment model is shown in Fig. 10~b!. The different
distributions correspond to the patterns shown in Fig. 7. T
size distribution is similar to the distribution observed for t
spring-block model. The distribution varies systematica
with k, however, there is no clear power law region in t
distribution. The data therefore suggest that there is no g
eral power-law form for the size distribution of fractures
these models.

The measurement of the fracture lengthL as a function of
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the open fracture areaA was recently proposed to characte
ize patterns of interacting fractures. Since the simulated f
tures are, to a good approximation, oriented perpendicula
the direction of extension, a fundamental measuremen
their length is the length in this direction. For simulations
the spring block model, plots ofL(A) are shown in Fig.
11~a! for different values ofe. Several crossover regimes a
expected for this model. For small fractures,A,5, the frac-
ture length is proportional to the fracture areaA. In this limit,
the finite lattice size is important: Fractures grow in leng
without growing significantly~compared with the lattice
size! in width. For large fractures, another crossover to
linear behavior is expected. Due to the localization leng
the fractures have a maximum width. The crossover lengt
which the upper crossover occurs, depends on the fric
thresholde as is evident from Fig. 11~a!. A possible power-
law region of the relationL(A) must be extracted from th
intermediate scale between the two crossover regions, bu
region between the two crossovers is too small to asses
behavior, even for the smallest values ofe used in the simu-
lations. A very similar behavior was observed for the su
strate attachment model. Figure 11~b! shows the curves
L(A) for different values ofk. Again, two crossover region
are observed and the intermediate region is too narrow
distinguish a power-law behavior from the crossover regio

For the simulations on the 2003200 lattice, the dynamic
range of fracture sizes was too small to determine the sca
behavior for both the size distribution and the relation b
tween length and area. A larger span between small fract

FIG. 9. Plots of the average distance between fractures,D l , as a
function of the substrate attachment constant,k @part ~a!# or the
movement thresholde for the spring-block model@part ~b!#. The
simulations are for a 2003200 system with a Gaussian distributio
of thresholds (m51.15, s50.05).
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and the characteristic length scales given by the localiza
lengths are needed. However, the computation time incre
rapidly with system size and with decreasing values of b
k ande. It was therefore difficult to carry out large simula
tions with large localization lengths. In order to study lar
systems, a modified version of the spring-block model w
introduced, in which all nodes were displaced initially durin
relaxation, irrespective of the displacement threshold. T
model behaved similar to the spring-block model, but t
amplitudeA of the localization length scaling relation,l
5Ae21, was increased. A larger value ofe could therefore
be used and larger systems could be simulated. We term
model the hybrid model and use it to study large scale fr
ture patterns. Figure 12 shows pictures from simulations
different system sizes ranging fromL5100 to 800. These
simulations are analyzed using the statistical measures in
duced above.

The size distribution of fractures is shown in Fig. 13. F
both the probability density of fractures,P(L), and its inte-
gral, the cumulative distribution is shown for different sy
tem sizes. The distribution again displays two crossov
The small fracture region is dominated by many small, ra
dom fractures as discussed above. For large fractures
finite system sizeL introduces a cutoff in the size distribu
tion. The plot in Fig. 13 indicates that the cutoff length i
creases systematically with the system sizeL. From the cu-
mulative distribution, the behavior in the intermediate regi

FIG. 10. Plot of the probability densityP(L) as a function of the
fracture lengthL for simulations on a 2003200 lattice with a
Gaussian distribution of breaking thresholds withm51.15 ands
50.05. Part~a! is for the spring block model withe50.002, 0.001,
0.0005, and 0.0001. Part~b! is for the substrate attachment mod
with e5k/300. The curves are for different values of the substr
attachment spring constant,k50.001, 0.003, 0.01, and 0.03.
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appears to be described by a power law with an exponen
20.360.1, which corresponds to a power law with expone
21.360.1 for the probability density, and the scaling regi
increases with system size. However, the plot of the pr
ability density shows that the effective exponent clearly
pends on the system size. A power-law interpretation
therefore not supported by the data.

The relation between the fracture lengthL and areaA are
shown in Fig. 14 for different system sizes. Due to the fin
lattice size, the fracture length is proportional to the area
small fractures. For large fractures, a power-law relationL
}Ab is observed, whereb50.7260.03. Simulations for
varying system sizes indicate that there is a crossover
large fractures, but that the range of the scaling region
creases systematically with system size. No effect of a lo
ization length was observed in this case.

Not only the fracture patterns, but also the individual fra
tures in the patterns, have statistically varying propert
From Fig. 12 it can be seen that a single fracture is not o
characterized by the width along the fracture, but also by
deviations from a straight line. The deviations can be ch
acterized by the width of the deviation,Dx, in thex direction
for a fracture of lengthDy in they direction. If the fractures
behave as random walks in thex direction, the relationDx
}Dy1/2 is expected. A generalization is a self-affine frac
with a roughness~Hurst! exponentH, for which the relation
Dx;DyH is expected. Figure 15 shows plots ofDy as func-
tions of Dx for the spring-block model. Since the width o

FIG. 11. Plots of fracture lengthL as a function of open areaA
for simulations on a 2003200 lattice with a Gaussian distributio
of thresholds (m51.15, s50.05). Part~a! is for the spring-block
model withe50.002, 0.001, 0.0005, and 0.0001. Part~b! is for the
substrate attachment model withe5k/300 andk50.03, 0.01, 0.003,
and 0.001.
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the fracture varied along its length,Dx was measured as th
deviation of the center line or the edge of the fracture. F
large simulations of the spring-block model, the relati
Dy(Dx) is consistent with a power law with exponent 2
60.1, indicating a self-affine scaling with a Hurst expone
H50.560.1. For small fractures, a crossover due to the
nite lattice size is observed. For large fractures, a crosso
that depends systematically on the system sizeL is ob-
served, indicating that the finite system size produces
upper crossover. In an intermediate range, a power-law
haviorDx}DyH, with a Hurst exponentH50.560.2, is ob-
served.

The measurement of the deviations and the lengths o
fractures in the pattern characterize the ensemble of f
tures. The deviations of each fracture can also be chara
ized individually by the two-point correlation function. For
fracture along they direction with an edge~or center–line!
given asx(y), the point-point correlation function is

C2~y!5^@x~y01y!2x~y0!#2&y0
. ~15!

For a self-affine fractal curvex(y), the correlation function
has the form

C2~y!}y2H. ~16!

A plot of the correlation function averaged over the 5 larg
fractures is shown in Fig. 15 for the large-scale simulatio
Over a limited range, the correlation function is consiste
with a power-law with exponent 1.060.2, which indicates a
Hurst exponentH50.560.1. However, the fractures ar
small and the dynamic range~the difference between th
largest and smallest length! is therefore too small for this
method to provide reliable results.

The dynamics of the development of the fracture patt
contains many interesting features that can be studied in
simulations. Since the development of the spring-blo
model and the substrate attachment model did not differ
nificantly, only the dynamics of the spring-block model
discussed. A simple illustration of the dynamics is given b
plot of the number of broken bonds,N, as a function of the
imposed extensiont as shown in Fig. 16. The developme
of the pattern is described by the following sequence
events: For small extensions most of the deformation is ta
up as strain in the springs. Small fractures appear as a re
of randomly placed low breaking thresholds. This behavio
termed the random nucleation regime. When the impo
extension increases and the strain in the springs approa
the average breaking threshold, the stress intensificatio
the fracture tips becomes large enough to propagate the
tures and induce avalanches of rupture events. This a
lanche regime is observed as the steep portion of the curv
Fig. 16. At even further extension most of the deformation
taken up by a widening of the already existing large fractu
and most ruptures occur at the fracture tips. For the subs
attachment model, a sequence of avalanche regimes follo
by fracture widening and growth appear as extension is
creased. However, most simulations were stopped during
first widening regime. Simulations were performed for d
ferent system sizesL. The number of broken bonds at 20%
extension,N(0.20), is not proportional toL2 as naively ex-
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FIG. 12. Picture of the fracture patterns from simulations withk50 ande50.008 for different system sizesL. The pictures are for 20%
extension forL5100, 200, 400, and 800 from the top left to bottom right.
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pected, butN(0.20)}L1.6660.1. For larger systems more o
the externally imposed deformation must therefore be ta
up by fracture widening.

The number of broken bonds is a model-specific quant
A more physical quantity is the total open area of fractur
A(t). This quantity can also be measured experimentally
plot of the development ofA for the spring-block model is
shown in Fig. 17. For small extensions, the total open are
small and approximately constant. For larger extensions
behavior crosses over to a linear dependence on the ex
sion.

V. DISCUSSION

The numerical model is intended to simulate the fract
ing in a material with a large length to depth ratio attached
n

.
,

A

is
e

en-

-
o

a deformable substrate. The real test of the model is to w
degree it reproduces the fracturing observed in experime
studies. A direct comparison between simulation and exp
ment depends on reliable statistical measures of the frac
pattern, the properties of single fractures and the dynamic
the fracturing process. Here, we compare the fracture
terns from simulations with patterns from experiments us
the quantitative measures presented previously.

Figure 18 shows the fracture pattern from a hybrid mo
simulation and the fracture pattern from an extensionally
formed clay slab@13#. In the experiment a clay cake wa
placed on the concave side of a bent metal plate that
slowly restored to a flat position, inducing a uniform exte
sion of 20% at the top surface of the clay cake as descri
by Walmannet al. @13#. The fractures were visualized b
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coloring the initial clay surface with a fine, black powde
The open fractures were gray, which gave a good contra
the black, powdered clay. In the picture, the open fractu
are shown as black regions. Visually, the corresponde
between the fracture pattern from the hybrid model and
experimental fracture pattern is very good. The simulat
model reproduces many of the important features of the c
fracture patterns. For example, fractures tend to line up
bands and small fractures frequently start close to the end

FIG. 13. The distribution of fracture lengthL for simulations for
e50.008 with a Gaussian distribution of breaking thresholds w
m51.15. Part~a! shows the probability densityP(L) and part~b!
shows the cumulative distributionP(L.L0). The probability den-
sity has been logarithmically binned. The curves are for differ
system sizesL5100, 200, 400, and 800.

FIG. 14. Plots of fracture lengthL as a function of open areaA
for simulations with a Gaussian distribution of thresholdsm
51.15, s50.05) fore50.008. The curves are for different syste
sizesL5100, 200, 400, and 800. The drawn line shows a pow
law L}Ab, with b50.7.
to
s

ce
e
n
y

in
of

large fractures. A striking feature of the experimental fra
ture pattern is the approximately uniform spacing of fra
tures. For the simulation model, the average spacing is c
trolled by the localization length, determined by th
parametersk or e. The average spacing in the model can
tuned to the value observed in the clay. The average spa
observed in the clay experiments also indicates that a len
scale corresponding to the localization length is presen

t

r

FIG. 15. Part~a! shows plots of the deviation,Dx, as a function
of fracture length,Dy, for a spring-block model withe50.008. The
different curves are for system sizesL5100, 200, 400, and 800
Part~b! shows plots of the correlations function,C2(y;L), for the 5
largest fractures in the spring-block model fore50.008. The dif-
ferent curves are for differing system sizesL5100, 200, 400, and
800.

FIG. 16. A plot of the cumulative number of bondsN broken as
a function of substrate extensiont in the spring-block model with
e50.008. The extension was increased in steps ofdt51023. The
curves are for system sizesL5200, 400, and 800. The plot is
scaled with the system sizeL.
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the clay sample, and we assume that the length scale i
lated to the height of the clay cake. There is considera
experimental evidence that relates the height of a deform
layer to the average fracture spacing@30,31#. An average
spacing is characteristic of thin layers attached to deforma
substrates, and indicates that a simulation model with a s
strate attachment is a reasonable approximation.

Statistically, the experimental fracture pattern has b
characterized by the fracture size distribution and the rela
between fracture length and area. For the experimental
tem, the size distribution was not consistent with a pow
law, and no other simple functional form was found to d
scribe the distribution. A direct comparison with the sim
lated patterns is therefore difficult. However, the gene
form of the distribution is qualitatively similar to the distr
bution observed for the simulations.

For the experimental fracture pattern, a very robust s
ing relation between the fracture lengthL and open areaA
was observed,L}Ab, whereb50.6760.02. Deviations due
to the finite image resolution were observed for small fr
tures, for which a direct proportionality was found. Howev
for large fractures the scaling relation was insensitive
changes in deformation type and rate, within certain lim
@13#. A similar behavior was observed in the simulatio
models, but crossovers were observed for both small
large fractures. For small fractures a crossover to a lin
behavior was expected, due to the finite lattice size. For
substrate attachment model and the spring-block mo
crossovers were observed for large fractures due to loca
tion effects at lengths larger than the localization leng
However, the localization length could not be increased s
ficiently to provide a large enough dynamic range betwe
the two crossovers to establish a power-law relation beca
the computation time increased rapidly with localizati
length. For the hybrid model, on the other hand, the up
crossover increased systematically with system size. In
intermediate range between the two crossover lengths,
relation L(A) was consistent with a power-law behaviorL
}Ab, with b50.7260.03, which is very close to the exper
mentally observed relation. However, we should be parti
larly careful in this case, since no separate crossover de
dent on the localization length was observed for the hyb
model. For the hybrid model the localization length depen

FIG. 17. A plot of the total open fracture areaA as a function of
the substrate extensiont for the spring-block model on a 40
3400 lattice. There are deviations from a universal behavior
small systems. The plot is scaled with the system sizeL.
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on the system size since all nodes are moved in the
relaxation step irrespective of the forces acting on them. T
propagation of a perturbation in the stress field therefore
pends on the number of relaxation cycles initiated, wh
depends on the number of bonds broken that in turn depe
on the system size. Consequently, the crossover length a
ciated with the localization is also expected to scale w
system size. Two upper crossover lengths are expected in
plot of L(A), one length that depends on the finite syste
size and one length that depends on the localization.
observed crossover length is the lowest of the two. The
havior of L(A) is therefore consistent with a power-law r

r

FIG. 18. A picture from an experiment of clay in@13# are shown
in part ~a! and part~b! shows a picture from a simulation of
8003800 lattice withe50.008 andk50 for a normal distribution
of thresholds (m51.15,s50.05). Both pictures correspond to 15%
extension.
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lation L}Ab in an intermediate range, but we cannot rule o
the possibility that the observed behavior is the result of
interplay between two crossover regions appearing at dif
ent lengths. The conclusion would be more convincing i
similar behavior could be found in the substrate attachm
model or the spring-block model by varying only a sing
length scale, the localization length. Unfortunately, w
cannot perform simulations with large enough localizat
lengths due to computer time limitations.

The effect of the localization length was also observed
the simulation of a single fracture in an ordered material,
which the relation between length and area crossed o
from a power-law relation to a linear relation at a crosso
length that was proportional to the localization length. Ho
ever, for a single fracture the relationL(A) characterizes
different features of the fracturing process than for the c
of interacting fractures in a disordered material. For
single fracture, the relation describes the development
fracture that does not interact with other fractures, wher
for the disordered system, the relation describes the stati
of the fracture pattern and the relation between large
small fractures at a given time in the development of
pattern.

The presented measurements of fracture roughness
uncertain because of the limited range of deviations and f
ture lengths. The fractures could not be distinguished fr
random walks, but the scaling behavior is not conclusi
There are also no relevant experimental data for compari
because of similar resolution problems for experimen
However, for experiments on uniform extension in powd
@32#, the fractures were found to be self-affine fractals with
Hurst exponent of approximatelyH50.760.05. This is sig-
nificantly higher than the value found here for the simulat
model, although the relevance of this exponent is not cle

The dynamical development of the fracture pattern
model and experiment is also very similar. The only quan
tative measure available in the experiments is the fractu
area as a function of extension,A(t). In the experiments
A(t) has a small, approximately constant, value for sm
extensions. For intermediate extensions the total fractu
area increases rapidly with extension and for large extens
a linear relationA(t)}t is observed@13#. A similar behavior
was observed in the simulations, for which the transitio
regime was more pronounced.

VI. CONCLUSIONS

Two related models for fracturing in layers of mater
attached to deformable substrates have been studied. I
substrate attachment model, the simulated layer is attach
a deformable substrate with springs, and in the spring-bl
model the layer is placed on the deformable substrate
sticks due to static friction forces. The models are similar
that they both have a characteristic length scale assoc
with the substrate attachment that restricts the propagatio
the stress field. For single fractures in an ordered materia
models are consistent with linear elasticity theory on sh
length scales, however, the propagation of the stress fie
cut off at large length scales. The dependence of the lo
ization length scale,l, on the system parameters differs f
the two models. For the substrate attachment model
t
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}k21/2, wherek is the substrate attachment spring streng
For the spring-block modelle}e20.960.1, where e is the
static friction threshold between blocks and substrate. In
dition, a hybrid model was introduced in order to simula
large systems of disordered materials. The hybrid mode
similar to the spring model, but the localization length is
function of bothe and system size and increases with syst
size.

The original motivation for studying modifications of th
substrate attachment model was to understand the im
tance of the relaxation parameter,e. This study shows tha
the behavior is dominated by the substrate attachment w
the localization length from the spring-block behavior,le , is
larger than the localization length for the substrate atta
ment springslk . However, both the substrate attachme
and spring-block models have interest in themselves,
both models represent reasonable representations of the
pling between the simulated material and the supporting s
strate. For all models, the behavior is characterized by a
calization length. The dependence on material properties
deformation history is also similar for all models, and t
patterns produced by the different versions of the model
visually and statistically similar. Many of the features of th
models, such as their dynamic development, are also c
mon. It is therefore reasonable to discuss and refer to
models as one common model, the substrate suppo
spring model, characterized by a localization length. Ho
ever, there are also differences between the model modi
tions that can be important. For example, in the spring-blo
model a node loses memory of its original position after
has been moved, whereas in the substrate attachment m
a node is always connected to its original substrate posit
These features might be important for larger systems
larger deformations or for different material properties th
what we have used here.

The models were used to simulate fracture patterns
disordered materials for comparison with clay. Here we ha
concentrated on Gaussian distributions of breaking thre
olds, which produced results similar to those found in lab
ratory clay model experiments. Statistical comparison
tween model and experiment was based on the
distribution of fractures and a relation between fractu
length and area. The size distribution of fractures is of int
est and importance in itself and has frequently been use
characterize fracture patterns. A variety of studies@33–35#
have suggested that in many geological systems the size
tribution is a power law. Neither experiments nor any of t
simulation models displayed a convincing power-law beh
ior and no other appropriate functional form was foun
Even though the behavior of the size distribution was qu
tatively similar to experimental results, a direct quantitati
comparison was not possible.

A more quantitative comparison between experiments
models was achieved using a recently proposed scaling
tion between the length and the width of fractures in a fr
ture pattern. The fracture length varied consistently asL
}Ab for large fractures in the experiments and over a ran
limited by the localization length in the simulations. How
ever, for the substrate attachment and spring-block mod
the behavior could not be distinguished from crossover
tween non-power-law regions because the dynamic ra
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was too small, whereas an intermediate power-law beha
was established for the hybrid model. The exponentb
50.7260.03 found in simulations with the hybrid mode
was also within the uncertainties of the experimental va
b50.6860.02. We cannot, however, discard the possibi
that the scaling observed in the hybrid model is aneffective
scaling resulting from the overlap of several crossover
gimes. Nevertheless, the data do not indicate that ther
more than one upper crossover length, and the obse
crossover length increases systematically with the sys
size ~and the localization length!, which indicates a power
law behavior in the limit of large localization lengths. Th
scaling relation,L}Ab, is a very robust measure, which
valid for several different extensional deformations, inclu
ing graben deformations. The relation is therefore suita
for comparisons between models and experiments and ca
an important characterization of patterns of interacting fr
tures. For the growth of a single fracture, the fracture wi
is proportional to the fracture length and the relationL
}A1/2 was observed. A similar experimental study is n
available for comparison, but this is consistent with resu
from geological field studies~see, for example,@36#!.

The substrate supported simulation model reproduces
most important visual and statistical properties and the
namical development of the clay fracture pattern. We fi
the good correspondence encouraging since the mod
ur
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n
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strictly two dimensional and fractures and faulting in a cl
slab is a three-dimensional process. The model produ
many of the correlations between fractures obvious from p
tures of clay experiments. This indicates that some of
important aspects of the clay experiments can be unders
without resorting to three-dimensional models. The expe
mental fracturing patterns are difficult to reproduce us
purely statistical modeling approaches. Consequently, r
tively simple two-dimensional models, like those describ
in this paper, may find important applications in the mod
ing of oil reservoirs and pollution transport. This study w
limited to extensional fractures in clay materials, since qu
titative experimental results were available only for this s
nario. The model should, however, also be applicable
other deformations, but new features might be needed
simulate shear and compression. This is subject for furt
study and will be addressed later.

ACKNOWLEDGMENTS

This work was supported by VISTA, a research corpo
tion between the Norwegian Academy of Science and Let
and Den Norske Stats Oljeselskap~STATOIL!, and has re-
ceived financial support and a grant of computing time fro
the Norwegian Research Council.
,

s.
@1# B. B. Mandelbrot, D. E. Passoja, and A. J. Paullay, Nat
~London! 308, 721 ~1984!.

@2# R. H. Dauskardt, F. Haubensak, and R. O. Ritchie, Acta M
all. Mater.38, 143 ~1990!.

@3# B. L. Cox and J. S. Y. Wang, Fractals1, 87 ~1993!.
@4# P. Meakin, Phys. Rep.235, 189 ~1993!.
@5# K. J. Mo”y, A. Hansen, E. L. Hinrichsen, and S. Roux, Phy

Rev. Lett.68, 213 ~1992!.
@6# E. Bouchaud, G. Lapasset, and J. Plane`s, Europhys. Lett.13,

73 ~1990!.
@7# J. Hall, Philos. Trans. R. Soc. London7, 79 ~1815!.
@8# The Deformation of the Earth’s Crust, 2nd ed., edited by W.

H. Bucher~Princton Univeristy Press, Princeton, NJ, 1941!.
@9# H. Cloos, Centralbl. Mineral. Pal.5, 609 ~1928!.

@10# H. Cloos, Naturwissenschaften34, 741 ~1930!.
@11# Oertel, Tectonophysics2, 343 ~1965!.
@12# V. V. Belousov and M. V. Gzovsky, inPhysics and Chemistry

of the Earth, edited by L. H. Ahrens, F. Press, S. K. Runcor
and H. C. Urey~Pergamon Press, Oxford, 1965!, pp. 409–499.

@13# T. Walmann, A. Malthe-So”renssen, J. Feder, T. Jo”ssang, P.
Meakin, and H. H. Hardy, Phys. Rev. Lett.77, 5393~1996!.

@14# S. J. Zhou, P. S. Lomdahl, R. Thomson, and B. L. Holia
Phys. Rev. Lett.76, 2318~1996!.

@15# F. Abraham, D. Brodbeck, R. A. Rafey, and W. Rudge, Ph
Rev. Lett.73, 272 ~1994!.

@16# S. Roux and E. Guyon, J. Phys.~France! Lett. 46, L999
~1985!.

@17# H. J. Herrmann, J. Kerte´sz, and L. de Arcangelis, Europhy
Lett. 10, 147 ~1989!.

@18# S. Feng and P. N. Sen, Phys. Rev. Lett.52, 216 ~1984!.
e

t-

.

,

.

@19# Y. Kantor and I. Webman, Phys. Rev. Lett.52, 1891~1984!.
@20# P. M. Duxbury, P. L. Leath, and P. D. Beale, Phys. Rev. B36,

367 ~1987!.
@21# L. de Arcangelis and S. Reder, J. Phys.~France! Lett. 46, L585

~1985!.
@22# A. Hansen, S. Roux, and H. J. Herrmann, J. Phys.~Paris! 50,

733 ~1989!.
@23# Statistical Models for the Fracture of Disordered Media, ed-

ited by H. J. Herrmann and S. Roux~North-Holland, Amster-
dam, 1990!.

@24# P. Meakin, Thin Solid Films151, 165 ~1987!.
@25# H. Colina, L. de Arcangelis, and S. Roux, Phys. Rev. B48,

3666 ~1993!.
@26# T. L. Anderson,Fracture Mechanics~CRC Press, Boca Raton

FL, 1995!.
@27# D. M. d. G. Allen, Relaxation Methods~McGraw-Hill, New

York, 1954!.
@28# O. Morgenstern, I. M. Sokolow, and A. Blumen, Europhy

Lett. 22, 487 ~1993!.
@29# D. Stauffer and A. Aharony,Introduction to Percolation

Theory~Taylor and Francis, London, 1992!.
@30# F. L. Ladeira and N. J. Price, J. Struct. Geol.3, 79 ~1981!.
@31# Q. Huang and J. Angelier, Geol. Mag.126, 355 ~1989!.
@32# T. Walmann~unpublished!.
@33# P. Segall and D. D. Pollard, Bull. Geol. Soc. Am.94, 563

~1983!.
@34# J. Walsh, J. Watterson, and G. Yielding, Nature~London! 351,

391 ~1991!.
@35# K. J. Heffner and T. G. Bevan, SPE J.20981, 367 ~1990!.
@36# J. M. Vermilye and C. H. Scholz, J. Struct. Geol.17, 423

~1995!.


