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Simulation of extensional clay fractures
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A spring network model has been used to study fractures in thin layers of material supported by a deform-
able substrate. The interactions with the substrate localize the stress/strain field in the material. The crossover
of the shape of a single fracture in an ordered material from an elliptical form to a long, thin shape was studied
as a function of the substrate attachment strength. For many interacting fractures in a disordered material, the
simulated fracture patterns reproduced the most important visual and statistical properties of fracture patterns
from recent experiments on thin slabs of clay attached to a deformable substrate. In particular, the correspon-
dence was good for a new set of scaling relations between the lengths and areas of fractures. The shapes of the
larger cracks were consistent with a self-affine curve with a Hurst exponent of 0.5. The dynamics of the
development of the fracture pattern corresponds qualitatively to experimental results.
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[. INTRODUCTION still influenced by its neighbors because the presence of a
fracture changes the stress/strain field in its vicinity. This
Fractures and fracture surfaces in disordered materialyype of boundary condition is not only an integral part of a
have recently received much attention. In particular, it hasvide range of natural systems, but it also greatly simplifies
been argued that fracture surfaces are self-afflnés], and  the problem from a computational point of view, because of
that the Hurst exponent has a universal, material independetite effect of the growth of one crack tip is localized and does
value[5,6]. Even so, attempts have also been made to correrot necessarily change tleatire stress/strain field after each
late the Hurst exponent with material properties such agrowth event.
toughnes$4,6]. In some systems, many fractures are nucle- A typical example of such a system is a thin slab of clay
ated throughout the material, and the interactions betweethat has been prepared on a deformable substrate. Clay mod-
them play an important role in the material failure processels have been used to study large scale geological processes
Fractures grow both by propagation at their ends and by then laboratory scales for almost 200 yeffs-11]. The use of
coalescence of smaller fractures. The growth of any indiclay models for this purpose is based on classical scaling
vidual fracture is strongly influenced by interactions with its theory[12] and the rheological similarity between clay and
neighbors, mediated by the stress/strain field. Systems of irthe Earth’s crust. A recent series of experime[i8] has
teracting fractures provide us with an opportunity to studyshown that the fracture patterns formed during extensional
properties other than the shapes of individual fractures. Fodeformation of supported layers of clay were characterized in
example, the distribution of the shapes and sizes of the fraderms of a scaling relation between the fracture lengénd
tures can be studied, and these distributions might also havbe open fracture are®, L=A”. The exponeng was found
universal characteristics. In several important applicationsto be approximately the same for both experiments and simu-
such as the characterization and modeling of oil reservoirdations. The study focused on extensional deformations since
aquifers and waste storage facilities, an understanding of thiae fractures and faults open during extensions and the frac-
distributions of fracture sizes and shapes is required, as is tHare pattern could therefore be easily visualized. Extensional
way in which the fractures are organized to form a fracturedeformations are also frequently dominant in oil reservoirs
network that can transport fluids through the fractured mateand these scaling relations may therefore have technological
rial. relevance. Here, the model presented 18] is studied in
In many cases of interest, fractures appear in layers afmore detail, with emphasis on the statistical properties of
material with a large length to depth ratio that are supportedracture patterns and individual fractures, and the dynamics
and deformed by underlyin@nd/or overlying layers of de-  of the fracturing process.
formable material substrate. Familiar examples include a thin Several models have been proposed to simulate fracture
film of paint on wood, plastic or metal, a layer of dried mud processes in two-dimensional systems. For example, molecu-
on the bottom of a dried up lak@essication fracturéor a  lar dynamics models have been applied to simulate atomic
layer of rock in the Earth’s crust. In these systems, the evofracture dynamicg14,15. However, these models are re-
lution of the stress/strain field in the material is dominated bystricted to systems of very small size. Models inspired by
the boundary conditions for the attachment, since the strestatistical physics and disordered systems in particular have
fields are strongly localized by the attachment to the subbeen more successful in describing macroscopic behavior. In
strate. However, the propagation of any individual fracture ighese models, the system is represented by a network of
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simple mechanical units that represent the properties of the
material averaged over an intermediate scale between the
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material can be quenchdgach material element is given
material properties selected randomly from some distribution
that is characteristic of the modedr annealed disorder can
be introduced by removing or modifying mechanical ele-
ments in the network randomly, with probabilities that de-
pend on both the properties of the individual mechanical F!G- 1. The material is represented by a triangular lattice of
elements and the local stress/strain conditions that they af'ings, each with spring constantand equilibrium lengtt. Each
subjected to. In this case, fracturing is represented by break\de is connected to an underlying substrate with a spring of zero
ing material elements irreversibly, and removing them fromequ'“brlum length and spring constarg . I_n the model, the nodes

the lattice. Models have also been developed in which th nd the substrate attachment points are in the same plane. The ela§-
mechanical elements are beams that can locally sustain shqﬁrngmork and substrate attachmem P'anes have been separated in
[16,17. Also, a scalar, electrical analog of the spring net- 's figure to show the connecting springs.
work model [18—-20, called the random fuse model, has

been used widely to study the fundamental aspects of fra({pental clay patterns. In addition, the self-affine scaling prop-

erties of individual fracture and the time development of the
ture[20-23. . )
d fracture pattern were studied and compared to experimental

Most studies carried out using mechanical network mo ta. The simulati del d both for studi t 2 singl
els have been limited to small system sizes because of tlg%a a. The simulation model used both for Studies ot a singie

long range effect of breaking a single bond. The Laplac racture in an ordered material and of many fractures in a
equation(for random fuse modelsor linear elasticity equa- disordered material, is presented in Sec. Il. Section Il dis-

tions must be solved after each bond is broken and the conf->S€S t?r? bber;]aw_or Off a stlnglel fra_(;;]ure, ancfj S(;)c. v _ﬁ?
putational cost of solving such equations increases rapidl resses the behavior of materials with many Iractures. -/ e

with system size. Meakifi24] developed a “substrate sup- esults are discussed and compared with experiments in Sec.
ported” model in which a two-dimensional spring network V. Finally, conclusions and suggestions for further study are

was bound to a substrate using elastic springs. If the moduk%resented in Sec. V.

of the springs connecting the network to the substrate is not

too small relative to the moduli of the springs in the two- Il. SIMULATION MODEL

dimensional network, the perturbation of the system result- oo ) .

ing from the removal of a single bond is localized and cal- 1he material is modeled as a network of simple mechani-
culations can be sped up significantly. The electrisablaj cal units, as explained above. Here, a triangular network of

analog of the substrate supported model was developed Bg}terconnected springs represents the materia}l. F.racturing oc-
Colina et al. [25] who suggested that it could be used to€Urs through the irreversible removal of a spring if the stress

simulate the drying of clay. However no quantitative com-in the spring exceeds a threshold value. The material prop-

parison between the model results and natural or laborator§"ti€S Of the material are determined by the properties of the
cracking patterns was made. Springs and the breaking thresholds. The springs are assumed

In this article, we study the fracturing in a large elastic 0 P& Hookearithe force is linear in the elongatipand the
network attached to a deformable substrate and attempt fAuilibrium length and spring constants of the springs are
make a direct comparison with recent experiments on fracconstant. The bounda_ry interactions are reduced to a S|mple
tures in clay. Comparisons are made visually and by usin@et of boundary conditions: The surface layer of springs is
statistical measures of the fracture pattern, such as the sizit@ched to a deformable substrate representing either a
distribution of fractures and a proposed scaling relation beSinglé substrate or a pair of substrates that lie above and
tween fracture length and area. This article is divided in twoP€low the deformed material. The coupling is through weak
parts. The first part addresses the behavior of a single fragPrings attaching each node to the substrate as illustrated by
ture in an ordered material. This allows a detailed study of 19: 1. The deformation of the layer is controlled by the
the effect of the substrate attachment on the fracture shagBotion of the substrate and the substrate spring attachment
and the propagation of the stress field. Since there are noints. The net force acting on a nodat a positionx; is
corresponding experimental studies on clay, the results were
compared with elliptical fractures described by linear elastic- R . s - - -
ity theory [26]. In particular, the scaling relatioh=A? is fi= 2 k(X =X{| =1 j+ Ko(Xg;— X)), D)
studied for the growth of a single fracture. The second part of Y
this article discusses the behavior of a disordered material i .
subjected to uniform extension. In this case, a pattern ofvhere the sum is over all connected neighbprsy;; is a
interacting fractures is generated. The distribution of shapesnit vector fromj to i, Xg; is the position of the substrate
and sizes of the fractures is studied and compared with thattachment points for node | is the equilibrium distance
patterns from clay. The simulated patterns reproduce thbetween nodéandj, « is the spring constant, ang is the
most important visual and statistical properties of the experisubstrate spring attachment constant. The equation can be
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simplified through a normalization with the spring constant The deformation in both models is determined by the mo-

and the equilibrium length. The resulting equation is tion of the substrate attachment points. Each point can be
moved individually, allowing many different types of defor-
1. o R L mations to be implemented. Here, we will study extensional
—Ifi =2, (Ixi—xj| = Duj j+K(Xg;— X)), (20  deformations only, and leave other modes of deformation for
K (L5 a further study. For a uniform extension in tgelirection,

the displacement of the substrate nodes at a total extehsion

wherex=x'/l and the effective substrate attachment spring$S
constantk= kq/k, is the ratio of the substrate spring con-
stant and the internode spring constant. - 1.0 -

During a simulation, the material is deformed by deform- Xoi()={ 0 1+t|X%0i(t=0). ()
ing the substrate and moving the substrate attachment points
in small steps. After each step, the spring network is relaxe%

so that the energy is at a minimum or, equivalently, so tha hey directions in order to reduce finite size effects. Periodic

B e e et oo 1 S Naundares: can b & prole fo ong factres hat prop
Hte across the sample, since the fracture will screen itself.

threshold. If any spring exceeds its breaklng threshold, it | owever, the simulations were stopped at small deforma-
removed from the network, and the network is relaxed again, - < eliminate such difficulties

This procedure is repeated until no more bonds break. The '
substrate is then deformed one further step and the relaxation
repeated.

Standard overrelaxation techniqugs?] were used to The behavior of a material consisting of a network of
reach a new mechanical equilibrium after each spring rupturghterconnected springs can be described by linear elasticity
event. The relaxation is characterized by the relaxatioriheory[zg] when boundary conditions are imposed on the
thresholde. Only nodes that would move further tharin a  edges only. However, for the substrate attachment model and
relaxation step were actually moved during the relaxationthe spring-block model, the boundary conditions and the im-
cycle. The attachment to the substrate strongly localize thgosed stress differ from the classical picture with stresses
perturbations from a bond rupture. In view of this localiza- app“ed On|y at the edges of the network. In order to Study
tion the relaxation was intensified in the regions around tthe effect of the substrate attachment, a Simp|e case of frac-
fracture tips during each relaxation cycle. This methodiyring was studied for the models and compared with results
greatly reduced the calculation time. from linear elasticity theory. A particularly simple case of

The effective substrate attachment force constamttro-  fracturing, for which similar solutions from linear elasticity
duces a characteristic Iength scalen the model. The at- theory are known, is the growth of a single fracture in an
tachment inhibits propagation of the stress field. It can beyrdered material far from the edges of the network.
shown that a perturbation from a bond rupture decays expo- |n fracture theory for elastic materials, an elliptical frac-
nentially in one dimensiofi25,28 and for smallk the aver-  tyre far from the boundaries in a two-dimensional material
age length between neighboring fracturas, scales as\  with a uniform extensional stress is described by the length
«1/\k in one dimension. The two-dimensional case of pureof the elliptic half-axesa andb. The width of the fracture,
extension is expected to behave similarly: A fracture willw(x), a function of the distance, to the fracture tip, in-
relax the nodes close to its sides, but the relaxation is expareases from 0 t@V = b:
nentially localized. After a length the stress will be similar

eriodic boundary conditions are applied in both x¥hand

Ill. SINGLE FRACTURE IN AN ORDERED MATERIAL

X 1/2

2— —
a

to that in an unfractured lattice. X
In the substrate attachment model, the relaxation thresh- W(X):Wmax\[g 4
old e is chosen so that<k. However, the physical interpre-
tation of e can be illustrated by examining the case in whichFor an elastic material, the maximum width is proportional
e>Kk. In this case, the relaxation in the network is dominatedto the fracture lengtl.=2a: wg,>L [26]. Close to the
by € and not byk. During each relaxation event, each node isfracture tip, the width is approximately proportional to the
displaced by a distance proportional to the net force actingquare root of the distance from the tip:
on it, and for smalk, this is approximately proportional to
the forces from the connected nodes in the layer. Nodes on
which the force is smaller than the threshotd,will not be
moved, corresponding to the effect of a static friction force
acting on all nodes. In this limit, the model can be describedAccording to linear elasticity fracture mechanics, the stress
as a network of interconnected blocks that rest on the subs,, decays as a power-law away from the tip of an elliptical
strate. During extension, all the blocks are moved with theracture according tar,,=C(a/x)*2
substrate. Then the network is relaxed, and a static friction The simulation model differs from the ideal case de-
with a threshold proportional te is imposed on each block scribed by fracture mechanics in several respects. The model
from the substrate. The model is therefore analogous to & discrete and the fracture has a smallest scale given by the
spring-block model on a triangular lattice. Results obtainedattice size. A fracture in the simulation model is therefore
from the spring-block model will be discussed and compareadiot a purely elliptical fracture. The loading conditions are
to the substrate attachment model. also very different in the simulation model, since stress is

X 1/2
w(x):wmax( 5) for x<a. (5)
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FIG. 2. Part(a) shows plots of the width of the fractuve(x;k) as a function ok, the distance from the fracture tip, akdthe substrate
attachment spring constant. The different curves(fimen bottom to top for k= 1072, 3xX 1073, 1073, and 10°“. The curves cross over
from power-law behavior for smakt to a flat plateau for large. Part(b) shows a data collapse plot based on the scaling farxk)
=k~ Pug,,(xk™*w). Part(c) shows a plot of the functiow,,(k), which indicates that it has a power-law form. P@htshow plots of¢,, as
a function ofk, where¢,, is determined fronw(¢,, ;k) =zw,.x. The curves shown are fa=0.9, 0.8, 0.7, and 0.6rom top to botton.

applied to all nodes through the substrate attachment. Approaches a constant,,,. The behavior of the width can
single fracture was prepared in the simulation model fortherefore be characterized as a crossover from a power-law
comparison with the theoretical results. All the springs in theform to a constant function at a crossover length For x
triangular network were given identical material propertiesi<¢,,, the width is approximately a power law, and for

the equilibrium length and the spring constants were thes¢  the width is constant. Both the maximum widih,,,
same for all nodes. A uniform stress Corresponding to ajnd the crossover |engm vary Systematica“y withk. Simi-
extensiont of the substrate was imposed on the system. Ini{ar crossovers are frequently observed in other areas of sta-
tially, the center bond was removed. The fracture was growtiistical physics, for example, in percolation theofg9].
without changing the imposed stress by repeatedly breakingapping the crossover behavior is often a useful tool in un-
the most strained bond along the border of the fracture, crejerstanding the functional dependence of the characteristic
ating an open, connected region. The simulation model useg@ngths on the parameters that are varied systematically.

here therefore differed from the earlier description, since tn%ased on ideas from crossover ana|ysi5, we propose the
substrate was fixed at a given extensipmand a fracture was  simple scaling form

grown according to specific rules irrespective of breaking
thresholds. However, these changes allow the effect of the w(x,K) =k~ Awg, (xk™"w) (6)
substrate attachment to be studied for a single fracture.
Simulations were performed for both the substrate attachfor the width, where the functiog,,(u) is a crossover func-
ment model and the spring-block model, and the parameteit&n, which is a power law for smail and constant for large
k and e were varied systematically. Simulations were alsou:
performed for different spring network sizes, measured in
units of equilibrium bond lengths. The results for the sub- _Jcut u<ug
strate attachment model are discussed first. (W)= c, USuU @)

The simulated fracture was characterized by the width
w(x) as a function of the distanceto the fracture tip. Figure Figure 2Zb) shows the best data collapse for the fracture
2(a) shows the behavior afi(x,k) for different values ok  width. The data collapse is not very good; there are clear
for e=k/300 on a 40& 400 lattice. Close to the fracture tip discrepancies for small lengths. However, the collapse ap-
the width increases rapidly witk The behavior is consistent pears to characterize both the behavior of the maximum
with a power lamw~x'2, which is similar to the theoretical width and the crossover length sufficiently well. The expo-
result for a continuum elastic medium. For largehe width  nents found from the data collapse indicate tkgt<k*w,



5552 A. MALTHE-SORENSSENEet al. PRE 58

where v,,= —0.48+0.05, andw,,,, <k #w, where3,,=0.45 1000 ‘ '
+0.05. This exact behavior was, however, anticipated, since i
the localization of stress perturbations due to the substrate
attachment implies the following physical picture: The sub- 100t
strate attachment introduces a length scelewhich de- i
scribes the exponential decay of perturbations in the stress I
field. For a one-dimensional model, depends on the sub- 10k
strate attachment spring constakit Ak~ 2 At length i
scales sufficiently smaller than the model is not influenced ,
by the substrate attachment and behaves as an unattached 1l ‘
spring network with a constant, imposed stress. This is the 1 10 100 1000 10000
exact situation described above for elliptical fractures in lin- A

ear elasticity theory. At lengths much greater thanthe

behavior is dominated by localization, which prevents the 100.000 '
fracture from widening when it grows at an end. Conse- ) 1
. . . 10.000 3
quently, in the limit of large lengths the fracture grows in g ]
length with a constant width. The power-law form of the 1000k ]
characteristic length,,, and the values of the power-law & T ]
exponents found above, are consistent with this picture. At 2§ 0 100:_ 1
distances significantly smaller than the characteristic length, B //
the power-law behaviow~x*? is observed, as expected :
theoretically for elliptical fractures. The leng#y, separates 0.010¢ ’ E
the two behaviors and correspondsitoThe power-law de- 0.001 . ‘ . .
pendence ok is also the saméwithin the uncertaintigsfor 10°% 104 102 1 102 104
&y and . Similarly, the maximum widthw,,,,, is also ap- Ak'®

proximately proportional ta.. The only relevant length scale
in the system is therefore the localization length, This
implies that

FIG. 3. A plot of the lengthL(A;Kk) as a function of the fracture
areaA and substrate attachment force constamart(a) contains a
direct plot and(b) shows a data collapse plot fa=10"1,10"2,3

W(X,k):)\g\;v(X/)\):kil/ng(inllz), (8) X10_3,10_3,10_4.

whereg;,,(z)*g,,(2), and that the exponeng, andv,, have A since the average width is defined(@g =A/L. A similar
values of 1/2 and—1/2, respectively. The values ¢8,, Measure has been proposed to characterize the statistical
=0.45+0.05 and »,,=—0.48+0.05 are consistent with properties of fracture patterns, and it is therefore interesting
these simple theoretical predictions. to study the growth of the length and area during the growth
The data collapse fow(x,k) is rather poor. Several fac- Of a single fracture, in order to compare with that of a frac-
tors influence the behavior @f. For small lengths, the finite ture pattern. Figure (8 shows a plot of the length as a
lattice size affect the results, and the dynamic range of valueiéinction of the fracture area obtained from the simulation
for the width, the span between the smallest and the large§f a single fracture in an ordered material. Both fracture
value, is narrow. Due to these factors, the uncertainties ar@ngth and area grow when the fracture grows, and the curve
large. However, the scaling results proposed above were alg$ows the relation between the two. The curve displays a
tested directly. The maximum width,,,, was measured di- clear crossover that varies systematically with the substrate
rectly as a function ok, as shown in Fig. @). The behavior ~attachment spring constarit, Based on the ideas presented
is a reasonable power law, and the best fit gives the relatiogbove, a data collapse of the form
W k™ 94291 The maximum width is therefore, within the
uncertainties, proportional te. Similarly, the characteristic L(A;k)=k ALg (AK™ ") 9
length £, was measured directly. A reasonable definition of

the characteristic length is the lengghat which the width  was attempted. Figure(l3) shows an excellent data collapse.

had reached a fractioa of its maximum value:w(&;k)  The crossover functiog, (u) varies from a power law for
=ZWmax- Figure 2d) shows a plot of as a function ok for  smallu to a linear relation for large:
several values af. The dependence is again approximately a

power law, &, k%401 which indicates that the character- CLUTt  u<ug
istic length is proportional to.. Consequently, the results gL(u)= (10)
from the data collapse are valid, even though there are obvi- Cu  U>Uo.

ous deviations from the scaling form given in EE).

For an elliptical fracture, the fracture shape is characterThe exponenty =0.5=-0.05 were determined by a fit for
ized by the ratio between the fracture width,,, and length  small fractures. The scaling exponemis= — 1.0+ 0.05 and
L. A more precise measure, which takes into account thgg, =0.55+0.05 were determined from the data collapse
variation of the width along the fracture, is the average widthshown in Fig. 8b). The behavior is separated by the charac-
(w), averaged along the length of the fracture. Equivalentlyferistic area,£,<k”., and the corresponding characteristic
the shape can be characterized by the fracture length and arleagth, & =L (&,).
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The crossover behavior can again be explained by consid-
ering the effect of the substrate attachment. The short expla-
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nation is that for small fracture$,<¢, , the fracture is not
affected by the substrate attachment and behaves as an ellip-
tical fracture in an unattached spring network, for which the
length and the width are proportional ahd A2, For large I N
fracturesL> ¢, , the substrate attachment prevents the frac-
ture from widening when it grows at the ends, implying that I 5_\\
L~A. A more precise argument, which also explains the RN
relationships between the scaling exponents, is based on the R
scaling form of the widtlw(x,k). The area of the fracture is 0.1 '
given by the integral of the width along the fracture: 0.10

1.00
<k %0

0.01 10.00 100.00

1.00¢

(12) - (b

L
A(L;k):fo w(x,k,L)dx.

In general the width is also a function of the fracture length,
L, w=w(x,k,L). For large fracturesL(> £, ) the width has
two distinct regimes, a region with a constant, maximum
width, and a region close to the tips, where the width varies.
The area is the sum of the areas of these regions

8
<

-

= S

Z o0} - .
S

]
©

0.01 . .
0.1

A(L:K) = 2fjww(x,k,L)dx+ (L= 2&) Wy (12)
100.0

nkO.SO
For largeL, the main dependence is in the last term, so that

FIG. 4. Part(a) shows the stress component, as a function of
distancex from the fracture tip. Partbh) shows a finite-size data
collapse plot of the stress componert(0,n;k) at the fracture tip
(x=0) as a function of the number of broken bonds

L(A;K) =AW=k Prg (Ak ). (13
In the limit of large lengthsL is proportional toA. Since
Wpa= k™ Pw, the scaling relatior8, + v = — B,, is obtained
from Eg. (13). A similar relation is obtained in the limit of
small fractures. Since all the curvégA) overlap in the
unscaled plot in Fig. @) the curvel (A) is independent ok
in this region. Assuming that the theoretical behavigqiA) shows a data collapse plot of,(0,n;k) for a single simu-
=AY is valid in this limit, we obtain the scaling relation lated fracture. For small lengths, that is, for small values of
—BL— v [2=0. For 8,,=1/2, the exponents are determined n, n<§,, the stress at the fracture tip increases approxi-
to be »y=1 and B, =1/2, which is very close to the expo- mately as a power lawr,,(0,n;k)<n®*%L This is very
nents found from the data collapse. The results are thereforgose to the theoretical results for elliptic fractures, for which
consistent with a crossover lengéh proportional to the lo- the amplitude of the stress depends on the square root of the
calization length\. fracture length. For large fracturass ¢,, the tip stress ap-
The localization effects of the substrate attachment caproaches a constant value. The crossover ledgtbeparat-
also be observed in the stress field around the fracture tipng the two behaviors varies systematically wikhand the
For an elliptic fracture in linear elasticity theory, thg,  data collapse again indicates that the crossover length is pro-
component of the stress tensor decays as a powerfolgw portional to the localization length.
xx~ %2 away from the fracture tip. Figurg@ shows a plot All the quantities that characterize the fracture shape are
of o, as a function of distancefrom the fracture tip for the therefore related to the localization length For fractures
single simulated fracture in an ordered material with a subwith lengths smaller than, or at distances smaller than
strate attachment spring constdatFor small distancess  the fracture is similar to an elliptical fracture described by
<¢,, the stress decays approximately as a power tay, linear elasticity theory. That is, the substrate attachment does
xx~ 0501 For large distances> &, , the stress is constant. not influence the fracture on these lengths. For fractures sig-
The crossover lengtl, varies systematically witkk. The nificantly longer thar\, the fracture is essentially a line of
data collapse in Fig.(4) indicates that the crossover length constant width, which is also proportional to the localization
is proportional to the localization lengtih, since &, length\. The behavior of the simulated fracture does, how-
xk~ 9501 From the theoretical treatment of an elliptical ever, deviate from the theoretical description for very small
fracture, the amplitude of the stress componegtis known  fracture and on very small lengths. We attribute these devia-
to depend on the fracture length The variation of the am- tions to the finite lattice size. Very small fracture is not well
plitude is characterized by measuring the stress at a constaapproximated by an elliptical fracture, because of the finite
distance from the fracture tig=0, that is, at the fracture tip lattice size.
for the simulated fracture. Because of the discrete lattice A similar analysis was applied to study the behavior of
size, the stress does not diverge at the fracture tip in th#éhe spring-block model. For the spring-block model, the per-

simulations. The stress at the fracture tip was measured as a
function of the number of bonds broken, in the fracture,
which is proportional to the fracture length Figure 4b)
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turbation of the stress field away from a broken bond is re- 1000F ' ' '
stricted by the displacement thresheldwhich corresponds
to a static friction threshold for node displacement. The ef- .
fect of € on the propagation of the stress field from a single 100 -
broken bond was first studied in a one-dimensional model. :
The nodes were initially subjected to a uniform straémd a —
bond was removed. The system was relaxed and the total
displacementAx of each node from its initial position was
measured as a function of the distarxa® the broken bond.

The results fort=1.1, that is, 10% extension, and varying

values ofe were consistent with the scaling form

10}

1 10 100 1000 10000

A
Ax= E*l.OiO.lgAX(Xel.OiO.l), (14) 100.000 . .
)

where the functiorg,,(u) decays as an exponential func- 10.000 ¢ E
tion. The decay of a perturbation away from the bond there- i S
fore depends on the characteristic lenythx e”<, with v.= g 1.000¢ Ve 3
—1.0+0.1. At a distance\, away from a broken bond, the = “w i .
strain perturbation is a small fraction of the maximum value. 0.100 ¢ // E
For the one-dimensional system, the behavior is very similar i // ]
to the behavior for the substrate attachment model. 0.010+ 7 E

The quantitative measurements used to characterize the P ]
fracture shapes for the substrate attachment model were also 0'00110_6 10‘_4 10'_2 1(‘)0 102
applied to the spring-block model. Plots of the widifx, €) Ag 16

of the fracture display a behavior similar to the substrate

attachment model. At short distanceszé,,, the fractures FIG. 5. A plot of the lengthL(A; €) as a function of the fracture
behave as elliptical fractures described by linear elasticityireaA and the displacement limit for the spring-block model¢
theory, and on long distancess¢&,,, the fractures have a >Kk). Part(a) contains a direct plot and pafty) shows a data col-
maximum width and grow in length only. The characteristiclapse plot fore=10"?, 6x107%, 3x107%, and 10°°.

length ¢, and the maximum width are proportional to the

localization lengtha .. Figure a) shows the relation be- Finite-size effects can have a significant influence in these
tween the fracture length and the fracture area for a  simulations even though they were carried out using periodic
single fracture in the spring-block model with a displacementoundary conditions on a 460400 lattice. The stress field
thresholde. The curve is consistent with a crossover from afrom a fracture may propagate around the sample and inter-
power-law behaviot.« A%® for small fractures|.<¢, , to a  act with its images in the infinite periodic lattice generated
linear behavior_ A for large fracturesL.> ¢, . The cross- by the periodic boundary conditions, if the primary lattice is
over length¢, varies systematically with the displacement small or the localization length is large. The finite-size ef-
thresholde. The data collapse in Fig.(B) shows that the fects were examined by varying the system sizeFor the
crossover lengthé, is a function ofe, & «e%%9%L The substrate attachment model, finite-size effects are important
crossover length is therefore proportional to the localizatiorfor small A and k. The form of the functionL (A;k,A)
length . for the spring-block model. A direct analysis of the (which describes how the length of the fracture depends on
stress field around the fracture tip is also consistent with théhe areaA for different values ok and A) depends on the

picture of a characteristic length,, proportional toX\,, Igttice size for small lattices as seen in Figa)6 The furjc-
which separates the theoretical behavior of an elliptical fraction crosses over at a lengéh that increases systematically
ture from the localized behavior in a large fracture. with A. However, for largeA the function crosses over at a

The spring-block model behaves similarly to the substratdength &, that depends ork. When §,>§, only the first
attachment model. The behavior is separated into two resrossover is observed. The behavior of the model is therefore
gimes. At small distances and for small fractures, the fractureetermined by the smallest of the lengthsandé, . Exactly
can be well described as an elliptical fracture in a linearlyhow £, depends on\ could not be extracted from the data,
elastic material. At this scale the fracture is not influenced bysince the finite-size deviations were small close to the cross-
the substrate attachment. For large fractures and at large digver and a large uncertainty was therefore associated with
tances the fracture is essentially a line of constant width. Théhe position of the crossover. For the spring-block model, a
characteristic lengths separating the two regimes are proposimilar behavior was observed. The functid(A;e,A)
tional to the localization length .. Some deviations were crosses over at a leng#y that increases systematically with
observed in the data collapses. However, the oneA as seen in Fig.®). However, for the given value af the
dimensional model indicated that there were deviations irregion in whiché, exceeded, was not reached, since only
the simple scaling behaviox,~ e~ 1, for larger values of. a limited range ofA values were available due to restrictions
Due to finite-size effects and restrictions on computer timepn computer time. The computer time needed for a simula-
the two-dimensional simulations were restricted to largetion increases rapidly with both and £, . Again, the exact
values ofe. dependence o, on A could not be determined. These
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each spring were selected randomly. The material behavior is
determined by the randomly distributed stress thresholds.
Several families of distributions were tested. The results
most similar to clay were obtained with a Gaussian distribu-
tion with averagex and standard deviatiom. The behavior

of the network varied withu and o. A very narrow distri-
bution resulted in a brittle material: A single straight fracture
propagated across the sample. For a wider distribution the
material behavior was more ductile.

The model is not restricted to simulate materials that are
homogeneous on large scales. Specific inhomogeneities can
be included in the model by changing the material properties
in particular regions of space. The model produces a wide
range of patterns for different distributions of breaking
thresholds. Centralized distributions, such as a uniform dis-
tribution or a Gaussian distribution produce similar patterns,
and are represented here by a Gaussian distribution of thresh-
olds. However, other types of distributions have also been
tested. For example, exponential distributions, for which
most bond strengths were small, produced very dilute pat-
terns. These patterns were not similar to naturally occurring
patterns, such as in clay, since most bonds fractured ran-
domly at small strains, when the stress field was not impor-
tant for the fracture development.

Fracture patterns from simulations in the substrate attach-
ment model and the spring-block model are shown in Fig. 7

FIG. 6. Finite-size scaling plots for the lendthas a function of
A for a singe fracture. Parta) showsL(A;k=103A) for the
substrate attachment model and patt) shows L(A;e=6
x10"%,A) for the spring block model. The curves are far
=50,100,200,400. The deviations are systematid in

and Fig. 8, respectively. All the simulations are for the same
material properties, a Gaussian distribution of breaking
thresholds was used witla=1.15 ando=0.05, but the sub-
strate attachment constaktande were varied. The patterns
in the two models have many common features. For ex-
ample, both patterns are characterized by an average spacing
finite-size effects restricted the parameter range that could bigetween the fractures, and by the correlations between the
tested by the simulations. For smaller valueskodnd €,  fractures: Long fractures are tailed by smaller fractures close
larger lattices were needed to avoid finite-size effects, and, ifo the fracture tips and fractures tend to form bands of almost
addition, the simulation time for identically sized lattices in- connected fractures. In the following, we characterize the
creased. The range of values available koand € were  fracture patterns statistically and visually. The statistical
therefore limited. properties of individual fractures, such as their self-affine
scaling properties, are studied, and statistical measures are
applied to describe the dynamics of the fracturing process.
A striking feature of the patterns in both the substrate
The computer model can be used to simulate the fracturattachment model and the spring block model is the approxi-
ing of a material layer attached to a deformable substrate. Imate uniform spacing of the fractures. The spacing appears
general, such systems do not consist of a single fracture, bt® vary systematically with the attachment paramekeand
many, interacting fractures that nucleate, grow, and merges. Studies of a single fracture in an ordered matefsze
The stress at a particular point in the material depends on afec. lll) show that the substrate attachment introduces a
the fractures in the sample, within the localization lengthcharacteristic length scale, the localization lengttthat de-
determined by the substrate attachment. Since both growtiermines the stress decay around the fracture and the shape of
and nucleation of fractures depend on the local stress, it ithe fracture. A similar characteristic length is expected to be
not sufficient to study a single fracture. The whole systenreflected in the fracture patterns for a disordered material. A
must be considered to address the behavior of the fractuffgacture releases strain in the regions surrounding the frac-
pattern. To model disordered materials such as rock and clagyre. In the direction normal to the direction of fracture
the local variation of material properties must be included propagation, the stress increases with the distance from the
The material is assumed to be homogeneous on scales mufthcture, and approaches a constant value far away from the
larger than the length of a single spring, which is realistic forfracture. In one dimension, the stress increment can be found
clay, since clay, unlike rock, is homogeneous on long lengttexactly. The substrate attachment induces an exponential lo-
scales. On smaller scales the material is disordered. The mealization of the relaxation close to the fracture, character-
terial properties of the springs are drawn from random disized by the localization length. This is the case for both the
tributions to simulate the quenched disorder, which is frozersubstrate attachment model and the spring-block model,
into the spring network. Here, the equilibrium length andhowever, for the spring-block model the one-dimensional re-
spring constant were constants, and only stress thresholds fsults are not known exactly, but were determined from the

IV. MANY FRACTURES IN A DISORDERED MATERIAL
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FIG. 7. Picture of the fracture patterns from simulations using ax2lD substrate attachment model witk k/300 and a Gaussian
distribution of breaking thresholds with=1.15 ando=0.05. The pictures are for 20% extension of the substraté&#d0.03,0.01,0.003
and 0.001 from top left to bottom right.

simulations. This stress increment controls the nucleatiomodel, Alock”, with v,=—0.4+=0.1. The average spacing
and growth of nearby fractures. A similar effect is expecteds, therefore, within the uncertainties, proportional to the lo-
in two dimensions. And, indeed, in the case of a single fraccalization lengthn. Similarly, for the spring-block model,
ture in an ordered material, a decay of the perturbations chax| < e”<xX ., with v.=—1.1=0.1. Consequently, the aver-
acterized by a characteristic lengthwas observed. Beyond age spacing is proportional to the localization length for both
a distance\, the perturbation from an open fracture, for models.

example the relaxation from an open fracture, is negligible. Several statistical measures were applied to characterize
Because of this effect, the spatial distribution of fractures ighe simulated fracture patterns. The size distribution of frac-
correlated, and the appearance of a characteristic distanteres is frequently used to characterize fracture patterns. Fig-
between the fractures in the direction of the externally im-ure 10 shows plots of the probability densiB(L) for a
posed strain is expected. The spacing in the simulated pafracture of length_. [The probability for a fracture to have a
terns was characterized by measuring the average distant@ngth in the interval to L+dL is P(L)dL.] The different
between fracturesil. Figure 9 shows plots of the average distributions correspond to the patterns shown in Fig. 7 and
spacing as a function d&f and e for the substrate attachment Fig. 8. For the spring-block mod¢Figs. 10a) and Fig. §,
model and the spring-block model, respectively. The curveshe distribution crosses over for small and large fractures.
are consistent with power laws. For the substrate attachmerossovers are also expected for small and large fractures. In
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FIG. 8. Picture of the fracture patterns from simulations of a>2R00 spring-block model with a Gaussian distribution of breaking

thresholds withu=1.15 ando= 0.05. The pictures are for 20% extension of the substrate<$d¥.002, 0.001, 0.0005, and 0.0001 from top
left to bottom right.

the simulated patterns, there are many small fractures th&iowever, the scaling region is too narrow to distinguish the
result from the random breaking of a single or just a fewbehavior from a crossover between two non-power-law re-
bonds. The number of these fractures depends on the distigimes.

bution of breaking thresholds and the density of very weak The probability density of fracture lengths for the sub-
bonds, and are not a result of the interaction between fracstrate attachment model is shown in Fig()0The different
tures and the stress field that characterize larger fracturedistributions correspond to the patterns shown in Fig. 7. The
Very small fractures, with a length smaller than a few latticesize distribution is similar to the distribution observed for the
constants, should therefore be ignored. Large fractures aspring-block model. The distribution varies systematically
restricted by the localization length, which is reflected in thewith k, however, there is no clear power law region in the
cutoff in the probability density?(L) for large fractures. In  distribution. The data therefore suggest that there is no gen-
the intermediate range, between these two crossovers, tleal power-law form for the size distribution of fractures in
characteristic behavior of the model can be observed. In thithese models.

region, the behavior might be consistent with a power law, The measurement of the fracture lengths a function of
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FIG. 9. Plots of the average distance between fractiksas a FIG. 10. Plot of the probability densify(L) as a function of the

function of the substrate attachment constanfpart (a)] or the  fracture lengthL for simulations on a 208200 lattice with a

movement threshold for the spring-block modelpart (b)]. The  Gaussian distribution of breaking thresholds wjil-1.15 ando

simulations are for a 200200 system with a Gaussian distribution =0.05. Part(a) is for the spring block model wite=0.002, 0.001,

of thresholds =1.15, 0=0.05). 0.0005, and 0.0001. Pafih) is for the substrate attachment model
with e=k/300. The curves are for different values of the substrate

the open fracture areA was recently proposed to character- 2ttachment spring constarit=0.001, 0.003, 0.01, and 0.03.
ize patterns of interacting fractures. Since the simulated frac-
tures are, to a good approximation, oriented perpendicular tand the characteristic length scales given by the localization
the direction of extension, a fundamental measurement déngths are needed. However, the computation time increases
their length is the length in this direction. For simulations ofrapidly with system size and with decreasing values of both
the spring block model, plots df(A) are shown in Fig. kande. It was therefore difficult to carry out large simula-
11(a) for different values ok. Several crossover regimes are tions with large localization lengths. In order to study large
expected for this model. For small fracturéds<5, the frac- systems, a modified version of the spring-block model was
ture length is proportional to the fracture avedn this limit, introduced, in which all nodes were displaced initially during
the finite lattice size is important: Fractures grow in lengthrelaxation, irrespective of the displacement threshold. This
without growing significantly(compared with the lattice model behaved similar to the spring-block model, but the
size in width. For large fractures, another crossover to aamplitude A of the localization length scaling relation,
linear behavior is expected. Due to the localization length=Ae !, was increased. A larger value efcould therefore
the fractures have a maximum width. The crossover length die used and larger systems could be simulated. We term this
which the upper crossover occurs, depends on the frictiomodel the hybrid model and use it to study large scale frac-
thresholde as is evident from Fig. 1&). A possible power- ture patterns. Figure 12 shows pictures from simulations for
law region of the relatio. (A) must be extracted from the different system sizes ranging fro=100 to 800. These
intermediate scale between the two crossover regions, but tregmulations are analyzed using the statistical measures intro-
region between the two crossovers is too small to assess tlieiced above.
behavior, even for the smallest valuesedfised in the simu- The size distribution of fractures is shown in Fig. 13. For
lations. A very similar behavior was observed for the sub-both the probability density of fractureB(L), and its inte-
strate attachment model. Figure (bl shows the curves gral, the cumulative distribution is shown for different sys-
L(A) for different values ok. Again, two crossover regions tem sizes. The distribution again displays two crossovers.
are observed and the intermediate region is too narrow tdhe small fracture region is dominated by many small, ran-
distinguish a power-law behavior from the crossover regionsdom fractures as discussed above. For large fractures, the
For the simulations on the 2600 lattice, the dynamic finite system size\ introduces a cutoff in the size distribu-
range of fracture sizes was too small to determine the scalintjon. The plot in Fig. 13 indicates that the cutoff length in-
behavior for both the size distribution and the relation be-creases systematically with the system sizeFrom the cu-
tween length and area. A larger span between small fracturgsulative distribution, the behavior in the intermediate region
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100.0¢ ' / the fracture varied along its lengthx was measured as the
e ] deviation of the center line or the edge of the fracture. For
large simulations of the spring-block model, the relation
1 Ay(AXx) is consistent with a power law with exponent 2.0

] +0.1, indicating a self-affine scaling with a Hurst exponent
€=00020 | H=0.5=0.1. For small fractures, a crossover due to the fi-
. £=00010 nite lattice size is observed. For large fractures, a crossover
£ =0.0005 that depends systematically on the system sizds ob-

. £=0.0001 served, indicating that the finite system size produces the

1 upper crossover. In an intermediate range, a power-law be-
0.1 ‘ ) havior Ax=AyH, with a Hurst exponerid =0.5+0.2, is ob-

1 10 100 1000 served.

The measurement of the deviations and the lengths of all
100¢F ' AR fractures in the pattern characterize the ensemble of frac-
() ] tures. The deviations of each fracture can also be character-
I o ] ized individually by the two-point correlation function. For a
fracture along they direction with an edgdor center—ling
given asx(y), the point-point correlation function is

10.0E

1.0F

Ca(Y) =([X(Yo+Y) =X(Y0) I*)y, - (15)

For a self-affine fractal curve(y), the correlation function
has the form

1000
Ca(y)ecy?. (16)

FIG. 11. Plots of fracture length as a function of open are@ A plot of the correlation function averaged over the 5 largest
for simulations on a 208200 lattice with a Gaussian distribution frgctures is shown in Fig. 15 for the large-scale simulations.
of thresholds (¢ =1.15, =0.05). Part(a) is for the spring-block  Qver a limited range, the correlation function is consistent
model withe=0.002, 0.001, 0.9005, and 0.0001. Ramtis for the  \yith a power-law with exponent 1:00.2, which indicates a
substrate attachment model witkr k/300 anck=0.03, 0.01, 0.003, 4 st exponentH=0.5+0.1. However, the fractures are
and 0.001. small and the dynamic rangghe difference between the

largest and smallest lengtlis therefore too small for this
appears to be described by a power law with an exponent afiethod to provide reliable results.
—0.3=0.1, which corresponds to a power law with exponent The dynamics of the development of the fracture pattern
—1.3=0.1 for the probability density, and the scaling regioncontains many interesting features that can be studied in the
increases with system size. However, the plot of the probsimulations. Since the development of the spring-block
ability density shows that the effective exponent clearly de-model and the substrate attachment model did not differ sig-
pends on the system size. A power-law interpretation isificantly, only the dynamics of the spring-block model is
therefore not supported by the data. discussed. A simple illustration of the dynamics is given by a

The relation between the fracture lengttand areaA are  plot of the number of broken bonds, as a function of the
shown in Fig. 14 for different system sizes. Due to the finiteimposed extensioh as shown in Fig. 16. The development
lattice size, the fracture length is proportional to the area foof the pattern is described by the following sequence of
small fractures. For large fractures, a power-law relation events: For small extensions most of the deformation is taken
«A# is observed, whergd=0.72+0.03. Simulations for up as strain in the springs. Small fractures appear as a result
varying system sizes indicate that there is a crossover faof randomly placed low breaking thresholds. This behavior is
large fractures, but that the range of the scaling region intermed the random nucleation regime. When the imposed
creases systematically with system size. No effect of a localextension increases and the strain in the springs approaches
ization length was observed in this case. the average breaking threshold, the stress intensification at

Not only the fracture patterns, but also the individual frac-the fracture tips becomes large enough to propagate the frac-
tures in the patterns, have statistically varying propertiestures and induce avalanches of rupture events. This ava-
From Fig. 12 it can be seen that a single fracture is not onlyanche regime is observed as the steep portion of the curve in
characterized by the width along the fracture, but also by it$Fig. 16. At even further extension most of the deformation is
deviations from a straight line. The deviations can be chartaken up by a widening of the already existing large fractures
acterized by the width of the deviatiofix, in thex direction ~ and most ruptures occur at the fracture tips. For the substrate
for a fracture of length\y in they direction. If the fractures attachment model, a sequence of avalanche regimes followed
behave as random walks in tixedirection, the relatiom\ x by fracture widening and growth appear as extension is in-
«Ay'? is expected. A generalization is a self-affine fractalcreased. However, most simulations were stopped during the
with a roughnesgHurst exponentH, for which the relation first widening regime. Simulations were performed for dif-
Ax~Ay" is expected. Figure 15 shows plots&y as func-  ferent system sized. The number of broken bonds at 20%
tions of Ax for the spring-block model. Since the width of extensionN(0.20), is not proportional ta\? as naively ex-
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FIG. 12. Picture of the fracture patterns from simulations With0 ande=0.008 for different system sizées. The pictures are for 20%
extension forA =100, 200, 400, and 800 from the top left to bottom right.

pected, butN(0.20)x A 16501 For |arger systems more of a deformable substrate. The real test of the model is to what
the externally imposed deformation must therefore be takedegree it reproduces the fracturing observed in experimental
up by fracture widening. studies. A direct comparison between simulation and experi-
The number of broken bonds is a model-specific quantityment depends on reliable statistical measures of the fracture
A more physical quantity is the total open area of fracturespattern, the properties of single fractures and the dynamics of
A(t). This quantity can also be measured experimentally. Ane fracturing process. Here, we compare the fracture pat-
plot of the development oA for the spring-block model IS torns from simulations with patterns from experiments using
shown in Fig. 17. For small extensions, the total open area i%e quantitative measures presented previously.
small _and approximately con_stant. For larger extensions the Figure 18 shows the fracture pattern from a hybrid model
b_ehawor crosses over to a linear dependence on the eXteinulation and the fracture pattern from an extensionally de-
sion. formed clay slab[13]. In the experiment a clay cake was
placed on the concave side of a bent metal plate that was
slowly restored to a flat position, inducing a uniform exten-
The numerical model is intended to simulate the fractursion of 20% at the top surface of the clay cake as described
ing in a material with a large length to depth ratio attached tdoy Walmannet al. [13]. The fractures were visualized by

V. DISCUSSION
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FIG. 13. The distribution of fracture lengthfor simulations for FIG. 15. Paria) shows plots of the deviatiolx, as a function

€=0.008 with a Gaussian distribution of breaking thresholds with©f fracture lengthAy, for a spring-block model witle=0.008. The
w=1.15. Part(a) shows the probability densitp(L) and part(b) different curves are for system S!ZQF 100,_ 200, 400, and 800.
shows the cumulative distributioR(L>L). The probability den- ~ Part(b) shows plots of the correlations functidd,(y; A), for the 5

sity has been logarithmically binned. The curves are for different@rgest fractures in the spring-block model fer0.008. The dif-
system sizes\ = 100, 200, 400, and 800. ferent curves are for differing system siz&s=100, 200, 400, and

800.

coloring the initial clay surface with a fine, black powder.

The open fractures were gray, which gave a good contrast #@rge fractures. A striking feature of the experimental frac-
the black, powdered clay. In the picture, the open fracturedure pattern is the approximately uniform spacing of frac-
are shown as black regions. Visually, the correspondenciires. For the simulation model, the average spacing is con-
between the fracture pattern from the hybrid model and th&rolled by the localization length, determined by the
experimental fracture pattern is very good. The simulatiorparameterk or e. The average spacing in the model can be
model reproduces many of the important features of the clajuned to the value observed in the clay. The average spacing
fracture patterns. For example, fractures tend to line up iPbserved in the clay experiments also indicates that a length
bands and small fractures frequently start close to the ends 6ale corresponding to the localization length is present in
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FIG. 14. Plots of fracture length as a function of open area FIG. 16. A plot of the cumulative number of bondsbroken as

for simulations with a Gaussian distribution of thresholgs ( a function of substrate extensidrin the spring-block model with
=1.15, 0=0.05) fore=0.008. The curves are for different system e=0.008. The extension was increased in stepstef10~3. The
sizesA =100, 200, 400, and 800. The drawn line shows a powercurves are for system sizes=200, 400, and 800. The plot is
law Lx<AP, with 8=0.7. scaled with the system size.
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FIG. 17. A plot of the total open fracture ar@as a function of
the substrate extension for the spring-block model on a 400
X 400 lattice. There are deviations from a universal behavior for
small systems. The plot is scaled with the system dize
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the clay sample, and we assume that the length scale is rg
lated to the height of the clay cake. There is considerable
experimental evidence that relates the height of a deformec
layer to the average fracture spacif@p,31]. An average ‘

spacing is characteristic of thin layers attached to deformable
substrates, and indicates that a simulation model with a sub{ *
strate attachment is a reasonable approximation. i ‘
Statistically, the experimental fracture pattern has been f
characterized by the fracture size distribution and the relation,
between fracture length and area. For the experimental sys ’
tem, the size distribution was not consistent with a power % Lo C
law, and no other simple functional form was found to de- |} -
scribe the distribution. A direct comparison with the simu- \ _
lated patterns is therefore difficult. However, the general| f '
form of the distribution is qualitatively similar to the distri- l i
bution observed for the simulations. f 3 * ‘
For the experimental fracture pattern, a very robust scal- ; ' o
ing relation between the fracture lengthand open are@d o _ ‘ ¥ ')
} {

was observed, xA?, where=0.67+0.02. Deviations due | R
to the finite image resolution were observed for small frac- ¢ k t f §

tures, for which a direct proportionality was found. However, ! \

for large fractures the scaling relation was insensitive to ' ( s h } ) ) '
changes in deformation type and rate, within certain limits _ 3{ ( ) Lo j {

[13]. A similar behavior was observed in the simulation | /1y ¢ {l ! ( (-ﬂ YS!
models, but crossovers were observed for both small and

large fractures. For small fractures a crossover to a linear FIG. 18. A picture from an experiment of clay h3] are shown
behavior was expected, due to the finite lattice size. For thin part (8) and part(b) shows a picture from a simulation of a
substrate attachment model and the spring-block modeB00x800 lattice withe=0.008 andk=0 for a normal distribution
crossovers were observed for large fractures due to localiz&f thresholds f=1.15¢=0.05). Both pictures correspond to 15%
tion effects at lengths larger than the localization length€&xtension.

However, the localization length could not be increased suf-

ficiently to provide a large enough dynamic range betweeron the system size since all nodes are moved in the first
the two crossovers to establish a power-law relation becaugelaxation step irrespective of the forces acting on them. The
the computation time increased rapidly with localizationpropagation of a perturbation in the stress field therefore de-
length. For the hybrid model, on the other hand, the uppepends on the number of relaxation cycles initiated, which
crossover increased systematically with system size. In adepends on the number of bonds broken that in turn depends
intermediate range between the two crossover lengths, then the system size. Consequently, the crossover length asso-
relation L(A) was consistent with a power-law behavior ciated with the localization is also expected to scale with
= AP, with 8=0.72+0.03, which is very close to the experi- system size. Two upper crossover lengths are expected in the
mentally observed relation. However, we should be particuplot of L(A), one length that depends on the finite system
larly careful in this case, since no separate crossover depegize and one length that depends on the localization. The
dent on the localization length was observed for the hybricobserved crossover length is the lowest of the two. The be-
model. For the hybrid model the localization length dependdavior of L(A) is therefore consistent with a power-law re-
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lation L A” in an intermediate range, but we cannot rule out<k~22 wherek is the substrate attachment spring strength.
the possibility that the observed behavior is the result of thg-q, tne spring-block modeh .= e %%L where € is the
interplay between two crossover regions appearing at differggaic friction threshold between blocks and substrate. In ad-
ent lengths. The conclusion would be more convincing if &gition, a hybrid model was introduced in order to simulate
similar behavior could be found in the substrate attachmer]rarge systems of disordered materials. The hybrid model is
model or the spring-block model by varying only a single gimilar to the spring model, but the localization length is a
length scale, the localization length. Unfortunately, Wegnciion of bothe and system size and increases with system
cannot perform simulations with large enough localizationgj,e
lengths due to computer time limitations. The original motivation for studying modifications of the
The effect of the localization length was also observed foig \psirate attachment model was to understand the impor-
the simulation of a single fracture in an ordered material, for;nce of the relaxation parameter, This study shows that
which the relation between length and area crossed ovepe pehayior is dominated by the substrate attachment when
from a power-law relation to a linear relation at a crossovety,q |qcalization length from the spring-block behavioy, is
length that was proportional to the localization length. How-|5rger than the localization length for the substrate attach-

ever, for a single fracture the. relatidn(A) characterizes . ont springsh. However, both the substrate attachment

different features of the fracturing process than for the casg spring-block models have interest in themselves, and
of interacting fractures in a disordered material. For theé,qih models represent reasonable representations of the cou-
single fracture, the relation describes the development of Bling between the simulated material and the supporting sub-

fracture that does not interact with other fractures, Wherea§trate. For all models, the behavior is characterized by a lo-
for the disordered system, the relation describes the statisti¢S,jization length. The'dependence on material properties and

of the fracture pattern and the relation between large anfetormation history is also similar for all models, and the
small fractures at a given time in the development of the,,iterns produced by the different versions of the model are

pattern. visually and statistically similar. Many of the features of the
The presented measurements of fracture roughness dels, such as their dynamic development, are also com-

uncertain because of the limited range of deviations and fragy,on . |t is therefore reasonable to discuss and refer to the
ture lengths. The fractures could not be distinguished from,qqels as one common model. the substrate supported
random walks, but the scaling behavior is not conclusivegying model, characterized by a localization length. How-
There are also no relevant experimental data for comparisoy ey “there are also differences between the model modifica-
because of S|m|Iar_ resolution problems for_ experimentsyions that can be important. For example, in the spring-block
However, for experiments on uniform extension in powdery,gqe| 4 node loses memory of its original position after it
[32], the fractures were found to be self-affine fractals with &y,5 heen moved, whereas in the substrate attachment model
Hurst exponent of approximately=0.7+0.05. This is Sig- 5 node is always connected to its original substrate position.
nificantly higher than the value found here for the simulationthase features might be important for larger systems, at

model, although the relevance of this exponent is not cleariygear deformations or for different material properties than
The dynamical development of the fracture pattern in,nat we have used here.

model and experiment is also very similar. The only quanti- e models were used to simulate fracture patterns in
tative measure available in the experiments is the fracturedisorgered materials for comparison with clay. Here we have
area as a function of extensioA(t). In the experiments, concentrated on Gaussian distributions of breaking thresh-
A(t) has a small, approximately constant, value for smallyqg \hich produced results similar to those found in labo-
extensions. For intermediate extensions the total fracturepatory clay model experiments. Statistical comparison be-
area increases rapidly with extension and for large extension§een model and experiment was based on the size
a linear relatiomA(t) =t is observed13]. A similar behavior  gistribution of fractures and a relation between fracture
was observed in the simulations, for which the transitionalgngth and area. The size distribution of fractures is of inter-
regime was more pronounced. est and importance in itself and has frequently been used to
characterize fracture patterns. A variety of studid3—35
have suggested that in many geological systems the size dis-
tribution is a power law. Neither experiments nor any of the
Two related models for fracturing in layers of material simulation models displayed a convincing power-law behav-
attached to deformable substrates have been studied. In tiir and no other appropriate functional form was found.
substrate attachment model, the simulated layer is attached Even though the behavior of the size distribution was quali-
a deformable substrate with springs, and in the spring-blockatively similar to experimental results, a direct quantitative
model the layer is placed on the deformable substrate ancomparison was not possible.
sticks due to static friction forces. The models are similar in A more quantitative comparison between experiments and
that they both have a characteristic length scale associatedodels was achieved using a recently proposed scaling rela-
with the substrate attachment that restricts the propagation dfon between the length and the width of fractures in a frac-
the stress field. For single fractures in an ordered material theeire pattern. The fracture length varied consistentlyLas
models are consistent with linear elasticity theory on short<A” for large fractures in the experiments and over a range
length scales, however, the propagation of the stress field igmited by the localization length in the simulations. How-
cut off at large length scales. The dependence of the locakver, for the substrate attachment and spring-block models,
ization length scale\, on the system parameters differs for the behavior could not be distinguished from crossover be-
the two models. For the substrate attachment model tween non-power-law regions because the dynamic range

VI. CONCLUSIONS
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was too small, whereas an intermediate power-law behaviastrictly two dimensional and fractures and faulting in a clay
was established for the hybrid model. The expongnt slab is a three-dimensional process. The model produces
=0.72+0.08 found in simulations with the hybrid model many of the correlations between fractures obvious from pic-
was also within the uncertainties of the experimental valugures of clay experiments. This indicates that some of the
B=0.68+0.02. We cannot, however, discard the possibilityimportant aspects of the clay experiments can be understood
that the scaling observed in the hybrid model isedfective  without resorting to three-dimensional models. The experi-
scaling resulting from the overlap of several crossover remental fracturing patterns are difficult to reproduce using
gimeS. NeVertheleSS, the data do not indicate that there i§ure|y statistical mode”ng approaches_ Consequenﬂy, rela-
more than one upper crossover length, and the observafely simple two-dimensional models, like those described
crossover length increases systematically with the systen this paper, may find important applications in the model-
size (and the localization lengthwhich indicates a power- ing of oil reservoirs and pollution transport. This study was
law behavior in the limit of large localization lengths. The |imited to extensional fractures in clay materials, since quan-
scaling relationL=A*, is a very robust measure, which is tjtative experimental results were available only for this sce-
valid for several different extensional deformations, includ-nario. The model should, however, also be applicable to
ing graben deformations. The relation is therefore suitablgther deformations, but new features might be needed to

for comparisons between models and experiments and can Bgnulate shear and compression. This is subject for further
an important characterization of patterns of interacting fracstudy and will be addressed later.

tures. For the growth of a single fracture, the fracture width
is proportional to the fracture length and the relatibn
«AY2 was observed. A similar experimental study is not
available for comparison, but this is consistent with results
from geological field studietsee, for exampld,36]). This work was supported by VISTA, a research corpora-

The substrate supported simulation model reproduces th#n between the Norwegian Academy of Science and Letters
most important visual and statistical properties and the dyand Den Norske Stats OljeselsképTATOIL), and has re-
namical development of the clay fracture pattern. We findceived financial support and a grant of computing time from
the good correspondence encouraging since the model the Norwegian Research Council.
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